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A B S T R A C T

The substantial stock of European buildings, accounting for more than 40% of energy consumption, has
prompted member states to establish a renovation standard with stringent performance criteria. As advancing
into the era of digital transformation, the concept of smart buildings emerges as a solution to create sustainable,
efficient, resilient, active, and comfortable living and working spaces. This is achieved through intelligent
resource use optimization, including the smart management of energy production, storage and distribution
systems. Smart buildings operate by harnessing monitoring data and leveraging artificial intelligence algorithms
and big data techniques. The integration of monitoring data with contextual information, such as building
information modelling, physics, or simulation models, enhances the intelligent management of resources.
Moreover, the incorporation of metrics like the smart readiness indicator promotes the adoption of smart
buildings. This study delves into the significance of these techniques, expanding on existing research in the
field of smart buildings. It integrates concepts of data enrichment, smartness, and user-centric approaches. Key
findings provide insights into future opportunities within the sector, emphasizing the need for user awareness
strategies, the development of new smart algorithms, and services that incorporate contextual data and the
smart readiness indicator. The study also advocates for the widespread adoption of building digital twins.
Abbreviations

Table 1 collects the abbreviations that have been mostly used along
the survey.

1. Introduction

Most of Europe’s buildings were constructed before the introduction
of thermal and electrical energy performance standards [1] and, for
that reason, a large stock of European buildings has a low energy
performance. It is estimated that 97% of the buildings in Europe should
improve their energy efficiency, as they are underneath the current
standards [2]. This improvement is of utmost importance, as according
to the Buildings Performance Institute Europe (BPIE), buildings account
for more than the 40% of the energy consumption [2] and 36% of the
greenhouse gas emissions in Europe [3].

Although the building stock in Europe is quite heterogeneous [1],
approximately 75% of the buildings belong to the residential sector [2],
and 85%–90% of these buildings will remain in 2050. Considering
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that only 3% of the buildings comply with the energy performance
standards, a renovation wave becomes necessary [3]: on the one hand,
with the aim of reducing 55% of the greenhouse emissions by 2030,
according to the Climate Target Plan 2030 [4]; by adopting new
digital technologies, following the digital strategy of the European
Commission [5].

The strategy for long-term energy retrofitting for the building stock,
stated by the energy performance buildings directive (EPBD) [6], pro-
motes the digitalization of the building sector within a short-term
evolution of the construction sector. Smart, connected and autonomous
buildings should allow for remote control of heating and cooling,
domestic hot water, renewable energy systems, lighting and appliances,
among others. Buildings need to increase their capability to integrate
information and communication technologies (ICT) so that elements
involved in the operation of buildings can communicate with each
other [7]. This includes the interaction between buildings, which can
be considered as a more complex system, namely districts [8]. Tech-
nologies like Internet of Things (IoT), artificial dntelligence (AI) or
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Table 1
Abbreviations.

Abbreviation Description

AEC Architecture, Engineering and Construction
AI Artificial Intelligence
ANN Artificial Neural Network
BACS Building Automation and Control Systems
BEMS Building Energy Management Systems
BIM Building Information Modelling
BIPV Building Integrated Photovoltaics
BRP Building Renovation Passport
CNN Convolutional Neural Network
CPB Cyber-Physical Building
CPS Cyber-Physical System
DEMS District Energy Management Systems
DNN Deep Neural Network
DTR Decision Tree Regression
EPBD Energy Performance Buildings Directive
EPC Energy Performance Certificate
eV Electrical Vehicle
GAN Generative Adversarial Network
HEMS Home Energy Management System
HVAC Heating, Ventilation and Air-Conditioning
ICT Information and Communication Technologies
IFC Industry Foundation Classes
IoT Internet of Things
KPI Key Performance Indicator
LCA Life Cycle Assessment
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
ML Machine-Learning
MPC Model Predictive Controller
PCM Phase Change Material
PMV Predicted Mean Vote
PSA Power-Shiftable Loads or Appliances
PSO Particle Swam Optimization
PV Photovoltaics
RFR Random Forest Regression
SRI Smart Readiness Indicator
SVM Support Vector Machines
TBM Technical Building Management

big data become necessary in the smart buildings context to collect,
manage and exploit buildings’ data, as well as to integrate legacy
equipment. In 2020, almost 225 million households were already con-
sidered to be smart, and this number is expected to increase up to 478
million by 2050 [9]. Indeed, the smart buildings sector is expected
to grow 15.64% by 2050, enhancing energy efficiency and digitaliza-
tion through an integrated approach that improves decision-making
processes [3].

Interoperability plays a crucial role, aiming at enabling communi-
cation and data exchange mechanisms [10]. Standard data models are
required to establish ontologies [11] as well as secured frameworks
to exchange information [12]. Technologies such as blockchain offer
the advantage of security and interoperability, while enabling new
distributed energy services in which buildings interact with each other.
One example is energy trading applications, with buildings exchanging
energy to promote renewable energy generation [12].

Buildings should also adopt user-centric methodologies, i.e. inte-
grating technology but having end-consumers as the core of the pro-
cess [13]. Under this concept, new approaches in smart building au-
tomation like human-CPS (cyber-physical system) become key [14].
A fundamental aspect of CPSs revolves around empowering end-users.
This empowerment goes beyond mere data visualization; it extends to
the active management and parameterization of energy systems, allow-
ing consumers to tailor them to their specific comfort requirements.
In this context, the adoption of co-design and co-creation principles
becomes imperative to accurately capture users’ needs [15]. Conse-
quently, placing end-users at the forefront, these principles serve as
the foundation for the smart building [16]. It is clear that the building
stock requires a deep renovation to transform the current construction
2

sector into a smarter and more efficient one. Digital technologies play
an important role in this transformation. In this work, the review of the
current approaches in the application of advanced technologies (such
as IoT, big data and AI) for a more efficient building stock. The current
challenges in the building sector and the opportunities for the next
generation of buildings are also described according to the state of the
practice. Technology is rapidly changing and new methods are being
applied; therefore, new approaches for smart building management are
needed. Under this perspective, this review aims to analyse the current
state of practice and the use of building models (such as building
information modelling - BIM) to exploit the benefits of contextual data.
Last but not least, novel metrics are also reviewed, such as SRI (smart
readiness indicator), and how it helps to improve the energy efficiency
of the building stock.

Most reviews in the field predominantly concentrate on the appli-
cation of artificial intelligence (AI) techniques for optimizing smart
building operations [17] or [18]. Some also delve into enriching data
models with simulation, physics [19], or building information mod-
elling (BIM) [20]. Notably, authors in [21] emphasize the importance
of making smart buildings user-centric. However, previous reviews lack
comprehensive coverage of the smart readiness indicator (SRI), BIM,
and co-simulation techniques. This review addresses this gap by focus-
ing on updating current practices within smart buildings, emphasizing
the integration of three key concepts: BIM, user-centric approaches,
and SRI. The novelty of this review is threefold: it provides updates
on AI-driven strategies compared to existing reviews, it analyses the
integration of BIM concepts, and it explores trends in the use of SRI as a
smartness indicator, detailed in Section 4.1. It is worth noting that this
survey concentrates on European countries, where SRI is applicable.
The authors are unaware of similar initiatives outside Europe. Never-
theless, the analysis presented in this survey, with the exception of SRI,
can be extrapolated to non-European countries.

The review is organized as follows. It is firstly discussed the defini-
tion of the concept of smart buildings (Section 2), and then explain the
methodology that has been followed to perform the review (Section 3).
It has consisted in analysing several European initiatives to identify
current challenges and barriers in smart buildings within Europe. Then,
based on those outcomes, a literature search has been executed, includ-
ing a search for related surveys as well as recent papers (Section 4).
Based on the analysis of those papers, current practices in technology
implementation are explained in Section 5, while user empowerment is
reported in Section 6. After this technological summary, opportunities
for further research are discussed in Section 7. Finally, the conclusions
are stated in Section 8.

2. Definition of the smart buildings concept

The smart building concept is not really new, it has been around
for quite some time. For instance, ‘‘The Smart Building’’ journal by
the American Society of Heating, Refrigerating and Air-Conditioning
Engineers (ASHRAE) was created in 1984, and a paper by Williams [22]
already treated advanced technology in building environment in 1987.
Smart building is a trendy concept (more than seventeen thousand pub-
lications in the last three years according to Google scholar). However,
there is no consensus in the definition of a smart building.

According to the European Commission [23], a smart building
contains a set of features such as connectivity, ability to interact with
objects, and the ability to be managed, controlled and automated in a
remote way, becoming in pro-active. Many authors have provided their
own view of the smart building concept, having different perspectives,
as summarized in [24]. Osama [25] defines a smart building as a
building with features like being responsive, effective (in terms of use of
resources), cost-effective, fully automated, interoperable and multidis-
ciplinary. Fouce et al. [15] remark the relationship between buildings
in a smart city and the connection of the users and building facilities,
and Al Dakheel et al. [26] complement it with multi-functionality
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Fig. 1. Smart building concept and interaction with the environment.
(i.e., the ability to operate more than one function) and adaptability
(i.e., the capability of learning, predicting and satisfying the needs
of users and the stress from the external environment). The Building
Efficiency Initiative [27] has also included the capability of delivering
useful services to make occupants productive at the lowest cost and
environmental impact over the building lifecycle.

Having in mind the different definitions, a set of common re-
quirements, enabling technologies, and goals for smart buildings can
be extracted. Fig. 1 provides the smart building concept from the
authors’ perspective. Smart buildings should be: (1) interactive with
other buildings (i.e., smart districts) and other facilities/assets, such
as electric vehicles (eV); (2) self-operative (i.e., provide certain level
of automation) for pro-active operation of the heating, ventilation and
air-conditioning (HVAC) systems and electricity grid; (3) connected &
interoperable; (4) cost-effective in the use of the resources; and (5)
interactive with users. This last point is related to the ‘‘Smart Users’’
concept [15], which leverages trained users to make better decisions
based on data. Smart buildings meet these requirements to make a
smarter use of both HVAC systems and distributed energy resources
(renewable, storage) and eV through the application of advanced tech-
nologies (such as IoT, big data and AI) [28]. While the users are
the core of the building, the ultimate goal is to address affordable
living conditions (e.g. thermal comfort) for the occupants [2] to reach
certain smartness degree according to a key metric, the smart readiness
indicator (SRI), which is described in Section 3.3 and provides a
quantitative value of the level of smartness of a building in multiple
domains (e.g. heating).

In contrast to smart buildings, traditional structures exhibit a re-
active nature. They lack connectivity and primarily rely on manual
operation, with building facilities operating in isolation. Traditional
buildings are not inherently prepared to adopt technologies such as the
Internet of Things (IoT) and/or artificial intelligence (AI) without prior
efforts in monitoring, digitalization, and/or the integration of datasets.
Moreover, the implementation of smart services for energy-efficient
operations requires foundational groundwork in traditional buildings.

3. Methodology of the review

Technology is rapidly growing, as stated by the well-known Moore’s
law. Due to this and the emerging techniques for building digitalization,
this review has established a methodology based on the PRISMA
approach (preferred reporting items for systematic reviews and meta-
analysis) has been applied [44] to get to the current state of the art
on smart buildings. The application of such a methodology lies in the
following steps:
3

1. The research question, as established in the introduction, seeks
to explore opportunities in advanced energy management strate-
gies within buildings. Specifically, the investigation focuses on
integrating BIM, co-simulation techniques, the SRI, and artificial
intelligence AI.

2. Design the review protocol. Establishing the review protocol
involves navigating the expansive literature on smart buildings.
Initially, a thorough examination was conducted to identify chal-
lenges and barriers within the smart building context. Drawing
insights from various European initiatives and European Com-
mission reports, key conclusions are gleaned to discern current
trends in the state of the art. This preliminary phase serves
as a foundation, guiding the subsequent search for pertinent
literature.

3. The literature search is systematically guided by the keywords
identified in the previous step. This approach serves to pre-
filter the substantial volume of research papers within the smart
building context. In addition to articles sourced from the Web
of Science database, supplementary references are identified,
including PhD theses, to ensure a comprehensive and diversified
exploration of the topic.

4. The selection of pertinent studies involved a comprehensive
review of all acquired literature. During this process, papers
not distinctly focused on advanced techniques in smart energy
management of buildings were meticulously excluded. The de-
scription of this step is given in Section 4.

5. Data extraction, which is partially compiled in the Table 2,
as well as Section 5. This section analyses and synthesizes the
extracted relevant works to do a meta-analysis of the current
practices in the advance energy management of buildings field.

6. Discussion of results through the key findings that are summa-
rized in Section 7, answering the research question.

7. Conclusions and recommendations, provided in Section 8.

3.1. Identification of challenges and barriers for smart buildings

As a second step of the review methodology, current challenges and
barriers in the digital buildings have been analysed. Four main sources
have been used to analyse the current challenges and barriers in the
digital buildings across Europe.

1. The SmartBuilt4EU initiative [16], which is a community of
experts working in different research and innovation projects for
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Table 2
Summary of the topics covered by the analysed surveys.

Reference Main topic Techniques Enriched model Co-creation User-centric SRI

Yu et al. [17] Smart energy management and
optimization

Deep reinforcement learning No No No No

Fan et al. [29] Smart energy management and
optimization

Deep reinforcement learning Simulation No Yes No

Aguilar et al. [18] Smart energy management and
optimization

Multiple techniques No No Yes No

Farzaneh et al. [21] Smart energy management Machine-learning No No Yes No
Ala’raj et al. [30] Smart energy management -

HVAC systems
Multiple techniques Yes Yes Yes No

Himeur et al. [31] Smart energy management AI-based techniques Simulation No Yes No
Sharma et al. [32] Wireless sensors & IoT Machine-learning No No No No
Luo et al. [20] Interoperable data for smart

building operation
Deep neural networks BIM No No No

Alanne et al. [33] Interoperable data for smart
building operation

Deep reinforcement learning Simulation No Yes No

Kim et al. [24] Smart home management AI-based techniques No No Yes No
Alane et al. [33] Smart home management AI-based techniques No No Yes No
Aslam et al. [34] Microgrid solar and wind energy

generation prediction & load
forecasting

Deep neural networks No No No No

Mabina et al. [19] Renewable and electric energy
generator

SVM & reinforcement learning Physics No Yes No

Khosrojerdi et al. [35] Smart grid AI-based methods & analytics No No Yes No
Hussain et al. [36] Demand-side energy management SVM & reinforcement learning No No No No
Lu et al. [37] Building energy prediction ANN No No Yes No
Barja-Martínez et al. [38] Distribution and consumption

domains
Multiple techniques No No Yes No

Neethirajan et al. [39] Digital twins Multiple techniques No No Yes No
Dong et al. [40] Digital twins Multiple techniques No No Yes No
Hasan et al. [41] Cyber-Physical buildings Deep neural network No No Yes No
Pan et al. [42] AI for Construction sector Multiple techniques BIM & digital twins No Yes No
Farghali et al. [43] Energy savings n.a. No No No No
This review Smart buildings optimal operation AI & ML techniques BIM & co-simulation Yes Yes Yes
defining the future of smart buildings in Europe. Industrial as
well as research and development organizations are engaged in
this initiative. Four task forces have been set up: (1) Interaction
with users; (2) Efficient building operation; (3) Interactions with
the external environment; (4) Cross-cutting activities (security,
business...).

2. European Commission (EC) technical reports published through
different channels, like EPBD [6], publications or initiatives.

3. Other European initiatives like the Building Efficiency Initia-
tive [27], created by Johnson Control in collaboration with
the World Resources Institute, and formed by a community of
experts in providing building efficient solutions. Another related
source/initiative is the annex 81 European initiative [45], which
deals with data-driven smart buildings.

4. The Smart Readiness Indicator (SRI) project [46], which aims to
develop a new indicator for the assessment of smartness level of
buildings.

Based on these sources, Section 3.2 focuses on the challenges and
arriers of the application of digital advanced techniques for enhanced
nergy-efficient building management, while Section 3.3 deals with the
pecific challenges related to the recently adopted SRI.

.2. Current status of the smart and digital building sector

The adoption of smart buildings is still far from reaching an out-
tanding number in Europe. BPIE realized an analysis of smart-ready
uildings based on the criteria of energy-system-responsiveness, dy-
amic operation and efficiency, and tried to answer the question about
hether Europe is ready for the smart building revolution with a clear
egative answer [47]. Fig. 2 depicts the status of the European coun-
ries.No one is smart-ready, with front-runners like Sweeden, whose
core is the highest (2.92 out of 5) [47], while the rest of countries
resented a lower readiness indicator.
4

As indicated by the EC in its Climate Plan for 2030 [4], acceleration
of the building renovation is crucial, and digitalization plays a pivotal
role. Moreover, the COVID-19 crisis has presented a new opportunity
to re-think and modernize the buildings [3] as human behaviour has
changed and new comfort conditions are demanded. However, the
smart solutions provide added value only if these are correctly under-
stood and adopted by end-users [48]. While the current approaches are
technology-push, customer needs should also be considered [45].

Current technology advances, such as cyber–physical systems (CPS),
have the potential to reduce costs and overcome barriers to energy
efficiency [45], but technology should be adapted to different users’
profiles [48]. End-consumers have to participate in the energy tran-
sition (co-creation), but data must be understandable through analyt-
ics [49]. Also, the different perceptions of comfort conditions should
be integrated to converge to energy-efficient building use.

Recalling the digital building, the integration of IoT sensors is
the main enabler, but there is a slow deployment. From the 80% of
estimated smart meters to be widely deployed in Europe by 2020 [47],
only a 48% has been reached in 2020, according to Eurelectric associa-
tion [50]. Additionally, the industry fragmentation includes multiple
communication protocols, data formats and ontologies with diverse
targets [51]. Although many initiatives are made to converge to stan-
dard communication protocols, the IoT deployment is still vendor
dependant [10].

The heterogeneous nature of the data related to buildings makes the
integration of interdisciplinary domains very complex [52]. That is the
case of the integration of building information modelling (BIM), which
is a work methodology in the building sector to virtualize building
assets (e.g. envelope, pumping system, etc.) or sensor timeseries. In
addition, industrial players are not yet ready for these technologies [9].
For instance, BIM is far from being fully adopted in Europe. According
to a report from the EC [53], Austria is the leading country in Europe
with 3.5 marks out of 4, but other countries like Portugal or Belgium

do not have legislation/regulation in this topic.
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Fig. 2. Readiness for smart technologies in buildings in European countries [47].
IoT technologies are usually combined with building simulation [9],
the so-called co-simulation, to complement missing data such as energy
inertia. However, neither the IoT nor simulation tools consider the user
behaviour in the results. Also, BIM frameworks are providing benefits
thanks to the use of digital data in the built asset. Digital building
logbooks (DBL) [54] are encouraged to create repositories of common
building data (i.e., static data such as BIM and dynamic data coming
from smart meters) over the building life cycle. DBL facilitates data
sharing, trust and even interoperability, bringing all the stakeholders
to the same table.

The convergence of all these data paves the way to the building
digital twins, which promise more effective asset design, operation
and maintenance [55]. One of the major advantages of digital twins
is the increase of collaboration and optimization of the energy perfor-
mance [55]. Its implementation through CPS supports the capability for
creating the demanded user-interaction, as well as the development of
advanced analytics by big data and AI techniques [45].

Reaching this vision requires adding intelligence from the beginning
of the design phase through to the end of the building useful life. Stan-
dards like EN-15232 [56], through the technical building management
(TBM) and building automation and control systems (BACS), focus on
the smart operation and maintenance of buildings. IoT, big data and AI
become enablers in the energy transformation of buildings [57]. These
technologies are supporting the creation of new standards and tools
to integrate data on future climate conditions and risks (adaptation
to climate change) into all aspects of decision making along the built
5

environment value chain [58]. Next generation of buildings must be
data-driven, applying modern ICT approaches [45], converging to level
A in EN-15232 standard [56].

In short, the main challenges and barriers that limit the implemen-
tation are listed:

• There is an absence of significant customer demand/awareness,
skills and/or access to data [45] and monitoring feedback. Tech-
nology is not user-friendly enough to target the general public
and data-driven techniques are still complex [48] to comply with
occupants wishes.

• There is a low penetration of BIM methodologies [53] for digital-
ization of buildings along the life cycle [59].

• There is low quality and insufficient amount of data to stimulate
renovation and deployment of smart services [60] due to the
reduced integration of IoT sensors [47].

• There is a need for the promotion of digital building logbooks
[54], including digital twins as the enablers for optimized energy
performance of buildings [55] in combination to the CPS and new
technologies like big data and AI [45].

• The application of smart energy operation and maintenance tech-
niques should be fostered to achieve a more climate-friendly
building stock according to the EN-15232 standard [56].

• Big data and artificial intelligence techniques should exploit the
big amounts of data that are being currently generated by build-
ings.
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3.3. The smart readiness indicator

New technological approaches need to be complemented with as-
sessment methods of the smart operation and energy efficiency of
buildings. The current building certification procedure is based on
the so-called energy performance certificate (EPC) schemes [6]. Five
overarching EPB standards (ISO 52000-1, 52003-1, 52010-1, 52016-
1 and 52018-1) [61] support the assessment methods of the energy
label. These methods are used to quantitatively predict annual building
energy demand based on a static calculation rather than on the dynamic
evolution of the energy use [60]. The next generation EPC should rely
on combining BIM, big data techniques and building smart-readiness
indicators [60].

The smart readiness indicator (SRI) [46] was introduced in the 2018
revision of the EPBD [6]. The SRI is an indicator whose main target is to
allow rating the smartness of buildings and is focused on the following
principles [46]:

• Capability of buildings to adapt their operation to the occupants’
needs.

• Capability of buildings to adapt their operation in reaction to
signals from the grid (energy flexibility).

• Energy efficiency and overall performance optimization.
• Enhancement of awareness amongst building owner and empow-

erment of them.

SRI should be the mapping and assessment tool for the smartness up-
rade of the existing building stock [61]. SRI should be embedded into
he existing EPC schemes, developing a digital building passport frame-
ork [2], where data from monitoring (including legacy equipment)

hould be considered. This integration will promote the renovation
oadmaps through the building renovation passport (BRP) [62], which
ill integrate the energy audits with the actual performance of build-

ngs. Its result will guide the interventions for the benefits in terms of
educed heating bills, comfort improvement and CO2 reduction. The

BRP takes advantage of the previously mentioned digital logbook [62]
as a central data repository to obtain information in energy con-
sumption and production. Nevertheless, the traditional ways of static
calculation of the energy performance ratings should be replaced by
dynamic and adaptable values according to the real building operation.

To sum up, the SRI-related challenges in the smart building context
are:

• Integration of SRI-driven energy management capabilities.
• Inclusion of SRI as indicator in the EPC for dynamic and adaptable

certificates.
• Making the users part of the smart building transformation and

empowering them with helpful information to take better-
informed decisions.

4. Literature review: State of the practice

The smart building concept has currently a wide application with
lots of actual investigation works from different disciplines, such as the
architecture, engineering and construction (AEC) industry, ICTs and
artificial intelligence among others. In this work, the focus is on the
application of ICT solutions (e.g., big data, machine-learning (ML) or
artificial intelligence (AI)) for transforming the current building stock
into a smarter one. The literature search is centered on papers within
the specific application field, aligning with European trends. It explores
how research conducted outside of Europe may also be applicable
within the European context.

As technology is exponentially growing, only results since 2019
have been included with the most updated research works. The lit-
erature exploration has been performed through the Web of Science
database, filtering by scientific articles. The query that has been applied
6

follows the decision tree that is depicted in Fig. 3 (step 3 of the
methodology), where keywords extracted from the analysis shown in
Section 3 guided the paper search. In this sense, the root for seeking
is the smart building topic itself, following an ‘‘or’’ logical query as
‘‘Smart Buildings or Smart Districts’’, obtaining seventeen thousand
nine hundred eighteen results on 22 July 2023.

Each branch of the decision tree represents a logical ‘‘and’’ to
combine queries and making more accurate look-ups. For instance, the
left branch of the figure represents the search ‘‘(Smart Buildings OR
Smart Districts) AND (Energy efficient buildings OR Energy efficient
Districts) AND Smart Energy Management AND (Machine-learning OR
Artificial Intelligence)’’. By applying the same reasoning for the rest
of keywords, the number of papers found is shown in Fig. 3, reaching
a final selection (in the terminal nodes of the tree) of a total of one
hundred seventy three articles, including previous surveys as well. In
this last case, only surveys in the last two years and a half (i.e. 2021 and
2022 and mid 2023) related to energy management and the application
of AI in smart buildings have been selected.

This review is focused on how AI and big data are supporting smart
buildings in terms of enhanced energy efficiency. According to this
criterion, results that did not focus on this topic were discarded. The lit-
erature search has been complemented with the results of the four task
forces from SmartBuilt4EU [16], three theses on the topic of AI and big
data for building energy management, and other initiatives described
in the previous section (i.e., annex 81, BPIE, etc.). After curating the
paper search and including these complementary references, a total of
one hundred ninety five references have been used for this review.

4.1. Analysis of existing reviews and contributions of this survey

As illustrated in Fig. 3, there are many results in terms of smart
buildings. In the last year and a half (January 2022–July 2023), 22
reviews have been published in the field of energy management and
application of AI in the smart building context. Table 2 summarizes
the results of the analysis of main reviews along 2021–2023 and
includes the main contributions from this work, summarized in the in-
tegration of BIM and co-simulation principles, co-creation, user-centric
approaches and SRI-driven strategies. The following bullets provide an
explanation about the meaning of the columns:

• Main topic that is addressed in the review, i.e., the context of
analysis of the survey. The preceding reviews predominantly con-
centrate on smart energy management and optimization topics,
primarily employing AI techniques like reinforcement learning.
Another key focus area is the integration of data through inter-
operability features, addressing the use of multiple data sources
to enhance data availability. Furthermore, previous surveys delve
into the examination of the smart grid and the integration of
renewable energy sources within smart buildings. Lastly, as a
central aspect of this study involves the integration of BIM, an
additional topic explored is digital twins, where BIM commonly
serves as the foundation for creating digital building twins.

• AI or ML techniques/technologies that are discussed in the re-
view, either being a single method or a combination of tech-
niques.

• Enriched model, which identifies whether the review analyzes the
use of any building model (e.g. BIM, simulation, physics, mathe-
matical equations...) as a complement for the AI/ML technique in
order to enrich the information for the decision-making processes.

• Co-creation, which indicates if the survey analyzes whether users’
feedback is introduced in the design of the energy management
strategies of the different proposals or not.

• User-centric, which indicates whether the survey analyzes if the
proposals have an impact on the users (e.g. improved thermal
comfort), or just focus on physical parameters like energy effi-

ciency.
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Fig. 3. Decision tree for the systematic literature search.
• SRI, which indicates whether the review analyses the use of this
indicator for the improvement of smart building energy manage-
ment strategies by the different proposals.

As anticipated, different approaches have been analysed from mul-
tiple perspectives and topics. As observed, none of the previous reviews
considers the SRI as part of the AI-based energy management strategies,
being this one of the major contributions of the current review and
how SRI can be exploited in the building energy sector. According
to the European directives, SRI should be the driver of the new ap-
proaches in the energy management of smart buildings [6], through
the so-called smart-ready services [46], which are applicable to differ-
ent pillars: thermal facilities, appliances, flexibility, renewable, smart
grid... However, the energy management and optimization strategies
are mostly focused on the application of advanced technologies, such
as reinforcement learning [17,29] or support vector machine (SVM),
fuzzy networks or regression, among others [18,31]. Complementary,
the bottleneck in these applications lies in the complexity of the data-
driven models due to non-linearity, as well as the limitations of physical
models [38].

The implementation of deep RL strategies allows the control at dif-
ferent building scales (i.e., single and multiple building energy subsys-
tem(s) and microgrids) [17] to minimize energy costs while maintain-
ing comfort levels. Nevertheless, comfort is not a trivial task and some
approaches are modelling thermal comfort of users. Hasan et al. [41]
analysed the use of generative adversarial networks (GAN), convo-
lutional NN (CNN) and tree-based CNN to predict personal thermal
comfort. In this same path, Farzaneh et al. [21] surveyed the com-
bination of data with building occupants to foster the end-consumer
participation in the AI-based algorithms, as well as Ala’raj et al. [30]
via ANN (in fact, deep neural networks). Even though end-consumer
comfort is considered, for instance via users’ feedback [17], the pre-
vious reviews still do not fully consider the co-creation aspects. This
survey puts the user in the centre of the smart management strategies,
analysing the co-creation and co-design methodologies to ensure users’
interaction.

In this line, adaptable smart thermostats and decentralized ap-
proaches are part of the current state of the art to provide solutions in
terms of prediction, classification of consumers or load profiling [24].
Other approaches are facility and asset management, energy systems
management, fault detection or load forecasting. Smart grid interaction
for electricity flexibility, the connection of appliances, such as eV, and
shiftable loads allows new ways of smart energy management moving
towards detailed system integration [33].

Moreover, the use of model-based controllers (pr, similarly, model-
predictive controllers MPC, also known as grey box models because
they are combining building physics with data-driven models, as indi-
cated in the next section) are not fully deployed. Many of the reviews
are focused on model-free strategies, although some authors deal with
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the co-simulation approaches [29] or building physics [19] or inte-
gration BIM [20,42] to move the paper-based work towards online
management. Nevertheless, it is not common across the listed reviews
to analyse, above all, the BIM or simulation models into the smart
management strategies. The authors usually mention the challenging
tasks of including simulation models: (a) difficulty in developing ex-
plicit building thermal dynamics; (b) uncertainty in system parameters
(e.g., renewable generation output, outdoor temperature, and number
of occupants); (c) lack of interactivity between thermal zones even
if they are correctly identified [17]. Aguilar et al. [18] pointed the
use of an optimized building envelope model using a multi-criterion
optimization approach. However, it cannot be neglected the model-
predictive control (MPC), which is also discussed in this review and
how the integration of these data move forward the building digital
twins and cyber–physical systems to better decision-making strategies.
Real-time applications are being analysed to operate and train algo-
rithms to learn about different cause–effect scenarios [39]; therefore,
AI algorithms are able to discern between useful and non-useful infor-
mation [39] to provide functionalities like demand-side management
(DSM) or load scheduling strategies. Additionally, digital twins require
the user’s behaviour integration [40], but the occupant behaviour
datasets are not large enough yet. Extending digital twins, the cyber–
physical buildings (CPB) [41] focus on the combination of real-time
data, AI-based techniques and users’ interactions.

Thus, the integration of heterogeneous data sources becomes piv-
otal, as highlighted by Sharma et al. [32], Luo et al. [20] or Alanne
et al. with special emphasis in the interoperability to deploy AI tech-
niques such as deep neural networks or reinforcement learning, intro-
ducing the concept of ‘‘cognitive’’ building [33]. In short, three main
axes are required in smart energy management: monitoring, analysis
(pre-processing) and decision-making [18,20,32,33]. Some techniques
like fuzzy c-means or k-means clustering algorithms were used to group
signals and facilitate fault detection and diagnosis tasks [29].

Finally, the application of AI/ML techniques is still complex, in the
sense of understanding data-driven models due to the parameters that
are fine-tuned within the target domain [42]. Many surveys discuss
about the application of reinforcement learning and artificial neural
networks for predicting the capability of renewable sources to cover the
electricity demand at buildings [19,34], providing different conclusions
in terms of more accurate techniques. Depending on the approach, it
is discussed the accuracy of SVM for energy forecasting [36] or the de-
mand for electric vehicle (eV) charging into account to cover resilience
or efficient operation by enabling energy audit [35]. In other cases, as
highlighted by Barja-Martínez et al. [38], additional techniques such
as linear regression or random forest are more predominant in the
operation and monitoring of smart buildings. Moreover, the introduced
bias due to the current data-sets is critical [37].

All these aspects are very relevant at this moment, as remarked
by Farghali et al. [43]. In these times with several crisis, such as
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the COVID-19 or the Ukraine war, energy becomes in a scarce re-
source. Techniques like deep neural networks. among others, may
reduce 18.97–42.60% of energy consumption in buildings worldwide.
Although this is not only limited to the use of AI techniques, but also
other methods like big data analytics for better-informed decisions,
where smart grid analytics supports the decision making in residential
buildings for energy savings (no results yet).

According to the addressed topics and challenges previously de-
scribed, this review provides insights with respect to the analysed
surveys as follows.

1. SRI is far from being the driver of the smart energy management
strategies, but it is not included in any of the analysis of the
previous reviews. It is still considered as an isolated indicator to
evaluate the readiness of the buildings, but not as the decider of
the most intelligent strategy. This review discusses how this SRI
should be used in the future building strategies.

2. Although the analysis of model-based methods (i.e. AI/ML tech-
niques complemented with BIM, simulation or physics), is in-
creasingly discussed in the reviews, its integration, due to the
complexity of data interoperability, is still not fully developed,
even though its benefits in several prevalent building domains.
This review provides more insights in how grey box approaches
would expand the smart building sector, in terms of digital
building twins and CPB.

3. Several authors highlighted the importance of the occupant
behaviour within ML algorithms. However, this is neither con-
sidered in benchmarking nor in physical models of the HVAC as-
sets [33]. Co-creation and co-design aspects are analysed in this
review and how to address end-users to provide user-centric ap-
proaches for better-informed decisions and management strate-
gies, fostering the interaction users and buildings.

4. Unlike many literature reviews, which are primarily focused on
AI techniques, this review is more centered into AI-based smart
services for smart buildings; not just comparing AI techniques,
but strategies to transform buildings into smarter agents within
the energy environment.

5. This review also compiles and provides a critical analysis of the
current state of the art in the smart building sector.

6. Last but not least, this review identifies a set of future research
lines and opportunities for transforming building stock into a
smarter one.

5. Advanced smart energy management techniques for smart
buildings

There is a trend to use AI and big data technologies to improve the
building energy performance [28]. These technologies allow including
prediction of energy demand and generation, as well as modelling
building behaviour for more precise operation. However, many of the
existing reviews are only focused on the application of data-driven
models without considering the use of contextual information, such
as the case of BIM to deploy the digital building twins. SRI should
be the driver for future smart buildings. This section reviews the
current trends in the application of AI and big data for advanced
energy management strategies, focusing on thermal energy facilities
at home, building and district levels, and on smart grid integration
(i.e. electricity). Additionally, the combination with BIM and SRI
addresses energy-efficient and pro-active buildings. Current AI-based
energy management strategies being deployed in smart buildings are
firstly analysed. Then, the integration of BIM and Cyber-Physical
Systems, and finally, SRI methods for enhanced energy management
are discussed are reviewed.

AI can buildings with new skills: e.g., self-learning, self-decision-
making, and self-updating [28]. Many different techniques have been
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applied and analysed, such as support vector machines (SVM), artificial
neural networks (ANN), decision trees and reinforcement learning, as
part of the energy management strategies for smart buildings [17,28,
40,42]. Within this section, the current state of the practice in thermal
energy and electricity are tracked (in Sections 5.1 and 5.2, respec-
tively), thus complementing the previous surveys with the outcomes
of recent works.

5.1. Smart management of thermal energy facilities

Thermal energy accounts for 50% of the final energy use in EU
buildings [63]. While focusing only on the residential building stock
, thermal energy usage increases the statistics up to two thirds of the
final consumption. Thermal energy refers to the energy needed for
space conditioning (heating and cooling), as well as domestic hot water.
Currently, natural gas is the largest primary energy source (46%) [64].
The increase of the energy efficiency in the HVAC elements becomes
then pivotal for a decabornised building stock. AI, ML and big data
play an important role as they can provide optimal control strategies
and lead to better-informed decision-support systems to reduce the final
energy use.

Fig. 4 illustrates the three main levels that are usually differentiated
in smart energy management: (a) home energy management systems
(HEMS); (b) building energy management systems (BEMS); and (c) dis-
trict energy management systems (DEMS). As highlighted by [8], the
DEMS operates at a level involving the interaction between buildings
and their environment. This necessitates advanced energy management
strategies to cater to the demands of multiple buildings while ensuring
optimal comfort levels. Therefore, although this level extends beyond
a singular smart building, a smart building, as defined, should possess
the capability to be proactive and engage with its environment. This
characteristic forms a key focus of interest in this paper review.

5.1.1. Home energy management systems (HEMS)
Home energy management system is the basic level on the energy

management hierarchy, where dwelling level facilities are the control-
lable loads, such as washing machines or dishwashers, among others.
In the thermal context, the main basic asset is the thermostat, aiming
at thermal comfort, but also, air-conditioners or electric water heaters.
All of them are known as thermostatically controlled appliances [65].
Nevertheless, there is a lack of interoperability in the HEMS that needs
to be overcome to facilitate the energy management [66]. Table 3 com-
piles the literature focused at HEMS, indicating the application field,
techniques employed and whether home models are used. This table
confirms that only TRNSYS models (a reference simulation tool) [67]
are employed in one case, while BIM is also used in another work.
The rest of studies do not exploit the benefits of including model-based
approaches (see Section 5.3).

Several works have investigated the optimization of the final energy
use when employing thermostats to assure thermal comfort. Wang
et al. [68] developed a rule-based control algorithm to enhance comfort
according to the ASHRAE-55 standard [81]. It includes an adaptive
temperature set-point depending on a random occupancy pattern gen-
erator, as well as co-simulation strategies with EnergyPlus software (a
simulation tool similar to TRNSYS) [82]. It demonstrates 90% of user
satisfaction and approximately 14% of energy savings. Other authors
like Abdulgader et al. [69] bet for the application of machine-learning
techniques like multiple linear regression (MLR), support vector regres-
sion (SVR), random forest regression (RFR), and decision tree regres-
sion (DTR) to calculate thermal comfort by using Fanger method [81]
(a method to evaluate thermal feeling). RFR presented the best results
in terms of root means square error (RMSE) and 𝑅2 metric while SVM
offers the lowest mean absolute error (MAE).

In the case of Naseem et at. [74], they researched on a machine
learning-based temperature set-point estimator using a predicted mean
vote (PMV) approach, while modelling the building demand in the

EnergyPlus software. The results of combining ANN and EnergyPlus
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Fig. 4. Levels in the smart energy management of buildings.
Table 3
Home energy management systems.

Literature Application field Technologies Enriched model?

Duman et al. [65] Smart thermostat Fuzzy logic No
Wang et al. [68] Smart thermostat Rule-based control No
Abdulgader et al. [69] Smart thermostat Various regression methods No
Merabet et al. [70] Smart thermostat Fuzzy logic No
Hakimi et al. [71] Smart home appliances Rule-based control No
Gao et al. [72] Thermal comfort Feedforward neural network Yes, TRNSYS
Abdelrahman et al. [73] Thermal comfort K-Nearest Neighbour & Random Forest Yes, BIM
Naseem et al. [74] Thermal comfort Model-predictive controller with ANN Yes, EnergyPlus
Yang et al. [75] Indoor temperature (comfort) Multiple techniques No
Traboulsi et al. [76] Indoor temperature (comfort) Multiple techniques No
Verma et al. [77] End-user comfort Multiple techniques No
Chinthavali et al. [78] Home energy profiling Optimal controllers No
AlZaabi et al. [79] Home energy prediction Data fusion with ANN & fuzzy No
Ramadan et al. [80] Home energy assets consumption factorial hidden Markov model No
(MPC) obtained 17.20% less energy use during winters and 14.67% less
energy use during summers than a simple on/off controller. However,
as stated by Lee et al. [83], one unintended consequence could be the
load synchronization due to the similar operation of smart thermo-
stat controls. Besides, current practices do not consider real occupant
schedules. Another challenge is identified by Merabet et al. [70], who
stated that comfort calculations based on the ASHRAE-55 standard
present discrepancies between the real and predicted values. Personal
interaction is thus necessary to better analyse thermal comfort, and
they concluded that fuzzy logic is an appropriate tool that models the
users’ behaviour in the buildings [70].

Duman et al. [65] also implemented a fuzzy logic thermostat, but
combining the electricity price and renewable production to reduce the
costs within an air-conditioning system. Their results demonstrate an
increase of the self-consumption (up to 93%) and reduced costs of 44%
from the original values. Air-conditioning is one of the controllable
loads of the thermal management at home, but its coupling with the
grid should be considered. Hakimi et al. [71] proposed a hybrid home
management system where controllable and non-controllable loads
are grouped. Unlike other researches, the design of the algorithm is
based on a mathematical formulation, which models the electricity and
thermal storage systems, appliances and production facilities, while
decision-making is rule-based [71]. The algorithm reaches the equi-
librium by balancing the generation sources to supply all thermal and
electrical loads, storing the surplus of energy.
9

Thermal comfort is, as observed, a key aspect to be ensured at
HEMS level. Gao et al. [72] developed a feed-forward neural network,
complemented with bayesian regularization and deterministic policy
gradients, to learn and predict indoor thermal comfort conditions.
Their proposal led to 4.3% of energy savings and thermal comfort
improvement of 13.6% [72]. However, the model requires some data
(e.g. radiant temperature), which is usually not monitored. Same hap-
pened with the work by Abdulgader et al. [69], which requires the
use of data such as human metabolic rate (calories burned by human
body), and thus needs to be estimated. Yang et al. [75] compared six
algorithms to predict the indoor temperature, where the autoregressive
integrated moving average (ARIMA) method showed the most promis-
ing results. Abdelrahman et al. [73] made use of BIM to extract building
features, integrating the spatial characteristics, achieving up to 0.93 of
validation accuracy.

However, user comfort cannot be limited only to thermal aspects,
but also visual and indoor environmental quality should be considered.
To enhance these factors, Verma et at. [77] compared several optimiza-
tion techniques (genetic algorithm, bat approach, artificial bee colony
and neural networks (NN)) in combination with a fuzzy temperature
controller and a linear regression model. The authors demonstrated an
energy consumption reduction of more than 2300 kWh/year, with the
best performance for the bat algorithm, and comfort indexes (merging
thermal, visual and environmental quality) higher than 0.83 [77].
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Table 4
Comparison between building thermal modelling categories.

Model Data requirements Complexity Applicability

White-box Only for model calibration High: Detailed physical model New buildings or no data available
Black-box Historical data-set Medium: Apply machine-learning Highly monitored building
Grey-box Medium size data-set Medium: Simplified building physics + ML New buildings or minimum monitoring
There is a key question about how the energy profiles change under
nexpected situations such as the COVID-19 pandemic. Chinthavali
t al. [78] have analysed how home assets needed to be re-adapted
nder these circumstances in multiple households. The use of pro-
rammable thermostats reduced the baseline from 44% to 31% of
he energy consumption. Besides, indoor temperature variance due
o pandemic situation was researched by using three methods, linear
egression, multilayer perceptron and random forest [76].

These works are complemented with home energy prediction tech-
iques that allow forecasting energy needs at home level. For that
nd, methods like data fusion [79], which consists of merging data
rom multiple sensors, are used. While the ANN technique monitors the
nergy consumption, the fuzzy logic allows decision-making inserting
he uncertainties of the users. The results shows improved accuracy of
2.3% (true positive vs total population).

However, data (either energy consumption or comfort) are not al-
ays available, limiting the capabilities for research; hence, techniques
re required to interpolate data-sets. Ramadan et al. [80] developed an
lgorithm to estimate energy consumption by home assets to implement
he management system. The non-intrusive load monitoring (NILM)
ethod, using a factorial hidden Markov model (FHMM), was applied

o obtain the status of the appliancesappliances status based on the
verall signal from the smart meter. Data imputation procedures were
pplied to complete the data-sets.

.1.2. Building energy management systems (BEMS)
The next hierarchical level is the building, which consists of the

ggregation of multiple dwellings. Building level can be considered as
condominium or a set of dwellings using a common renewable energy
roduction facility or central heating systems. One of the main activi-
ies at the building level is the management of these common facilities
o keep similar comfortable levels in all dwellings, at the same time
hat effective and efficient services are dealing with building energy
avings due to better performance [84]. Daissaoui et al. [84] proposed
he joint use of IoT and big data (hadoop and spark framework) to
xtract knowledge from data. Data play a crucial role in this type of
pplications, but the optimal selection in sensor distribution within the
uilding is desirable [85]. The use of the Web of Things (WoT) enables
he interoperability to combine data from indoor air, HVAC and water
umps coming from various vendors to support the creation of energy
odels [86].

A key aspect at the BEMS level is thermal modelling. Thermal mod-
lling extracts the characteristics of the thermal behaviour of the build-
ng to improve its performance. Three main approaches are consid-
red [87]: (1) co-simulation through the use of simulation tools which
odel the physics of the building [17,40], what it is called the ‘‘white-

ox’’ model; (2) data-driven models using machine-learning [88],
‘black-box’’; (3) the combination of physical and data-driven models
‘‘grey-box’’) [89]. Table 4 gathers these three levels with the pros
nd cons and how the model should be applicable depending on the
ontext.

In the context of thermal modelling to predict the demand,
enavente-Peces et al. [88] introduced various machine-learning ap-
roaches (logistic regression, decision tree, linear discriminant analysis,
VD (singular value decomposition), k-neighbours and Gaussian NB
naive bayes) to determine the most important parameters affecting the
emand of a building. These are the climate, age of building, envelope
eatures and surface. In [90], an event-triggered reinforcement learning
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lgorithm was deployed with the aim at reducing the complexity. The
problem was characterized by a semi-Markov decision process and the
results showed optimal thresholds of 12.5 ◦C and 17.5 ◦C to switch
on/off, respectively, manifolds in the control policy [90].

Luo et al. [91] characterized the building thermal losses and infil-
tration, as well as the effects of heat transmission between adjacent
spaces and floors. The authors demonstrated the effects in 12 zones
within an office building in United Kingdom, where different set-points
were set in such zones. Artificial NN were used to train the model
according to different outdoor conditions, which were clustered by k-
neighbours method. Using the same technique, Liang et al. [92], unlike
Mohseni et al. [93] who used reinforcement learning, estimated the
heating and cooling loads by optimizing the algorithm with hunger
games search optimization, among other hybrid algorithms, reaching
very good values of 𝑅2 (higher than 0.94) and MAPE (mean absolute
percentage error) (lower than 0.08).

Li et al. [87] studied the application of grey-models for thermal
demand prediction. The multiple elements (i.e. envelope, zones, HVAC
systems...) of the building were modelled as resistance-capacitor (RC)
to combine them to represent the building thermal features. These
models covered multiple building perspectives (e.g. comfort, water
management or energy management, among others), as identified by
Himeur et al. [31]. A similar approach of an RC model was followed
by Raman et al. [94], who implemented a MPC (model-predictive
controller) that incorporated humidity and latent heat, increasing the
effectiveness both in winter and summer independently of the climate
zone. Chaganti et al. [95] combined the building features (glazing,
orientation...) with ensemble methods (three random forest together
with a final voting process to make the final decision). The results
proved the increase from 0.95 to 0.99 of the 𝑅2 parameter, reducing
the standard deviation of 𝑅2 parameter along simulation time.

One important aspect to be managed in the BEMS is the storage
(either thermal or electrical), which is usually combined with solar air
or water heating systems (as it will be also described in Table 8). In
this line, He et al. [96] compared different techniques (ANN, fuzzy,
neuro-fuzzy or SVM) to predict storage behaviour (water temperatures,
thermo-physical features or performance). One of the main conclusions
of the authors was that fuzzy logic can absorb uncertainties of the
weather forecast.

The electrification of the thermal energy systems should be also con-
sidered. This is mostly known as sector coupling [97]. From traditional
thermal systems like gas boilers, new trends are the integration of heat
pumps through power-to-heat technologies [98]. Duhirwe et al. [99]
addressed the integration of heat-pumps with storage and photovoltaic
(PV) production to enhance thermal comfort. To overcome the sector
coupling specific aspects, a cascade of deep learning algorithm demon-
strated the capability of reducing 10% of the final energy compared to
baseline. The first stage decides when to store or use thermal energy
according to electricity prices, while second stage treats the electrical
side [99].

Alanne et al. [33] studied with the integration of multiple energy fa-
cilities (heating and cooling, ventilation, lighting) to train autonomous
building, but did not integrate human behaviour. Korkas et al. [100]
also integrated multiple building loads (heating, PV, energy storage
and eV) in an approximate dynamic programming (ADP) method. This
method improved results by about 9%–18% compared to a rule-based
method and obtained results similar to those of open-loop optimization
(OLO) controllers, but reducing iterations by 10 times (implying a
lower computational load).

Table 5 summarizes the bibliography for BEMS. This table provides
the technologies applied by other works, as well as the application field

and the thermal model type from Table 4.
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Table 5
Building energy management systems.

Literature Application field Technologies Model type

Daissaoui et al. [84] Facilities & energy management IoT + big data Black box
Ibaseta et al. [86] Energy monitoring WoT Black box
Benavente-Peces et al. [88] Thermal modelling Multiple techniques Black box
Luo et al. [91] Thermal modelling k-means + artificial NN Grey box, TRNSYS model
Li et al. [87] Thermal modelling Simulation White box, resistance-capacitor
Duhirwe et al. [99] Heat-pump optimization Cascade deep learning Black box
Himeur et al. [31] Heat-pump optimization Cascade deep learning Black box
Raman et al. [94] HVAC optimization MPC White box, resistance-capacitor
Chaganti et al. [95] Heating & cooling prediction Ensemble learning Black box
Liang et al. [92] Heating & cooling loads Artificial NN Grey box, building physics
Mohseni et al. [93] Heating & cooling loads Reinforcement learning Grey box, building physics
Haji et al. [90] Model-predictive control Reinforcement learning Grey box, E+
He et al. [96] Thermal energy storage Multiple techniques Black box
Alanne et al. [33] Autonomous building Deep learning Black box
Korkas et al. [100] Building energy management system Approximate dynamic programming (ADP) Grey box, simulation model
5.1.3. District energy management systems (DEMS)
The highest level corresponds to the district management, which

includes sets of buildings and interactions between them [8]. The
action-reaction between the buildings and the environment should be
considered [101], such as district heating networks or solar/wind farms
(Fig. 4). At this level, decision-making tools are enhanced with the
objective of making a more efficient use of natural resources [8].
Although this level extends beyond an individual building, the district
level, encompassing interactions between multiple buildings, is deemed
significant for this review. It holds importance because it necessitates
the management of both generation and demand sides for achieving
optimal energy distribution.

Within DEMS, usually, the generation system operators configure
the operation parameters based on experience and these are adjusted
with data. Then, decision-making tools help in the optimization of
the operation. Marinakis el at. [102] proposed a big data architecture
where all the data artifacts coexist to support better-informed decision
making procedures. The authors bet for a solution where data-sets
are classified and dimensionality is reduced to provide simpler energy
models as services. The use case presented in [102] presents a multi-
linear regression (i.e. combination of several linear regression models)
to notify users about anomalies in the energy facilities with an accuracy
of 95%. Luo et al. [91] also proposed a big data platform with analytics
calculation capabilities. The management of timeseries and historical
data resources were combined with simulation tools (TRNSYS in the
case of [91]) to be able to predict heating and cooling demands of
buildings sets. This simulation-model-based schema was complemented
with hybrid ML techniques where clustering, more specifically the k-
means algorithm, determined the thermal zones of the building and an
artificial NN determined the energy demand for each zone, which is
indeed one of the recommendations of the EPBD [6] to enhance thermal
energy efficiency and comfort in buildings.

These decision-making strategies rely on the capabilities for infor-
mation exchange amongst the various district elementsThe the relation-
ships should be established, such as explained by Saba et al. [103],
through an ontological solution for energy intelligent management.
Thanks to the ontology relations, a set of rules can be defined to
properly schedule the energy resources, dealing with savings of 4.58%.
One of these relationships is the district heating. In this way, Lumbreras
et al. [104] developed a multivariate regression to estimate load fore-
cast for 42 stations (distribution element at building level), obtaining
𝑅2 values higher than 0.7 and nearly 0.9 in most of the cases.

DEMS allows using resources more efficiently. García-Fuentes [8]
developed a fuzzy multi-criteria decision-support system for districts
energy management strategies. Ibaseta et al. [86] also highlighted the
importance of data on decision-support systems. Bibri et al. [101] ap-
plied big data techniques to support better informed decisions in the so-
called eco-districts, evolving to net zero energy districts (NZED) [105].
Both studies had a common objective, which was focused on the im-
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provement of the energy efficiency in buildings and districts. A similar
conclusion was extracted by Myeong et al. [106], who made use of
long short-term memory deep NN to predict the air pollutants due to
the buildings in urban areas.

Districts are not simply the interaction between buildings. It can
also include other energy elements, such as the eV and charging sta-
tions [107], as reinforced by Luo et al. [28]. Park et al. [108]
developed an artificial NN to merge the physical and virtual assets
of a smart energy district where renewable, smart charging, storage
and demand are integrated. Highlighting the sector coupling [99],
balancing thermal and electricity loads, to satisfy the users’ require-
ments. Calise et al. [107] developed an evolutionary algorithm to
properly manage the storage elements in a sector-coupling problem.
The authors proposed two operation strategies, for winter and summer,
showing promising results (simulated, based on TRNSYS), where a
district storage system contributes to the self-consumed electricity for
more than 13%. Zhou et al. [109] proposed a stochastic MPC to
minimize the cost for energy consumption of thermal regulation and eV
charging. A similar approach was followed by Roccotelli et al. [110],
who developed a stochastic mathematical model to balance the energy
shares in a district, combining buildings, renewable energy, storage and
eV. The authors achieved a 25% of cost reduction (peak shaving).

The references analysed in this section are summarized in Table 6,
which summarizes the technologies and application fields being treated
in the district level management.

5.2. Smart grid integration and flexibility

Smart grid can be defined as a set of transmission lines, substations
and elements that make possible the electricity exchange from the
power plants to the buildings and other end consumers (for instance,
industries) [111]. Unlike thermal energy, this section focuses on two
aspects: (a) demand-side management, where the appliances and other
electricity loads are included; (b) grid-connected renewable systems,
coupling mainly, PV (photovoltaics) and wind farms facilities with the
grid and the buildings. Smart grid is a very wide research area, but,
within this work, only the building-related works are included, leaving
out researches such as electricity markets, microgrids or grid resilience,
among others.

5.2.1. Demand-side management
Electricity accounts for 30%–40% of the energy consumption in

buildings, specially enhanced during peak hours [112]. Demand-side
management searches for targeting behavioural patterns of energy con-
sumption at consumer side to boost grid flexibility [26,113]. Shiftable
(e.g. washing machine) and non-shiftable (e.g. fridge) loads need to
be identified and their consumption predicted. Bourhnane et al. [114]
implemented an artificial NN to forecast energy consumption of diverse
appliances (air-conditioning (AC), fridge, furnace and microwave) and

systems in a building, with an error of 2% [114]. This low error rate
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Table 6
District energy management systems.

Literature Application field Technologies

Marinakis et al. [102] Decision support tool Big data and multi-regression
Luo et al. [91] Decision support tool Clustering and artificial NN
García-Fuentes et al. [8] Decision support tool Fuzzy logic
Ibaseta et al. [86] Decision support tool Data-driven
Bibri et al. [101] Decision support tool Big data
Myeong et al. [106] Decision support tool Long short-term memory deep NN
Saba et al. [103] Ontological Solution for Energy

Intelligent Management
Rule-based

Lumbreras et al. [104] District heating load prediction Clustering & multivariable regression
Calise et al. [107] Smart energy district Evolutionary algorithms
Park et al. [108] Smart energy district Artificial NN
Zhou et al. [109] Smart energy district Stochastic algorithms
Roccotelli et al. [110] District energy balance Stochastic algorithms
is mainly owing to the high quality of the data (clean and complete
online available data-set).

The power-shiftable loads or appliances (PSA) have gained interest
due to the emergence of eV and distributed generation systems [65].
The use of the eVs as electrical storage, through V2G (vehicle-to-
grid) or G2V (grid-to-vehicle) approaches, lays out new scenarios for
demand-side management, where eVs are integrated as an additional
element of the grid infrastructure [115]. Duman et al. [65] analysed
the coupling of smart thermostats for air-conditioning systems with eV
loads to determine the operational phases according to the demand
and renewable generation. However, load shifting strategies have a
drawback, which is the energy peak due to the recovery of the normal
operation. In [116], a load response model was deployed on response
of end-consumers demand, while a second step operated to address
the mentioned energy payback effect. Härkonen et al. [66] studied
these PSA at home level for the case of Kalasatama from the users’
perspective, concluding that some loads cannot be shifted such as
lighting or cooking.

Ahn et al. [117] developed a total building power prediction model
based on a long short-term memory technique combined with the
Fourier transform. A similar exercise was done by Baek et al. [118]
in a commercial building. Wang et al. [119] developed a fuzzy-based
demand-side management for lighting controller, achieving 78% of
energy savings in combination with LED bulbs. But demand-side man-
agement requires the interaction with the end-consumer. First of all, the
algorithm should not disturb the end-consumer. Secondly, household
consumption profile is essential. Chadoulos et al. [120], through the
use of users’ apps, clustered, via k-means, households under same con-
sumption profiles to apply the same recommendations. Users should be
the core of the energy transformation and new people-powered business
models are crucial. Decarbonization, digitalization and decentralization
in the energy systems replace the traditional energy markets. Thanks
to the integration of technologies such as AI or big data, peer-to-peer
platforms, virtual power plants, energy trading or energy-as-a-service,
among others, are feasible [121].

The implementation of the flexibility services requires data. Liu
et al. [122] proposed a virtual container to create the digital twin based
on real data. The presented architecture enabled the user-side commu-
nication and smart metering virtualization to enable the creation of
machine-learning models.

Table 7 includes the demand-side management references being
analysed. It contains the application field of the work, as well as the
technologies and energy model according to Table 4.

5.2.2. Grid-connected renewable generation
Photovoltaics (PV) and wind power are the most widely used fa-

cilities for renewable electricity generation. PV systems present the
main challenge of the mismatch between generation and consumption
when connected to the grid (which is the usual configuration) [123].
Renewable energy generation might produce fluctuation in the power
network. To overcome this issue, many authors are working in the
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prediction of the demand and generation and, indeed, as presented by
Luo et al. [28], energy generation is the most frequent keyword in
the current state of the art. Several machine learning techniques are
applied. For instance, Pawar et al. [123] made use of artificial NN,
SVM and ensemble models. The authors demonstrated that Particle
Swam Optimization (PSO) based SVM is the model with the highest
performance in terms of MAE to predict energy generation and couple
with the grid, under the assumptions of their study.

Yao et al. [124] researched about a machine-learning framework,
based on regression, to adapt the grid according to the predicted
PV and wind energy generation and coupled with the load demands.
Alghamdi et al. [125] stated that Apache Spark is the best framework
to manage the data for real-time and batch processing to foster grid
coupling. In such an analysis, techniques such as neural network or
regression were investigated for large scale load prediction. Moreover,
the integration of energy storage elements increase the grid resilience,
then, being capable of adapting demand in peak price periods [26].

Zhou et al. [126] presented building integrated photovoltaics
(BIPVs) combined with phase change material (PCM) to enable flex-
ible charging/discharging strategies based on the change of state of
the material, implemented based on mathematical models. Maturo
et al. [127] also combined PV with PCM, modelling the systems as
RC in Matlab, showing optimal parameters for PCM design. Another
research based on PCM is [128], which reduced energy demand in
13%. These results show coupling electrical generation and thermal
storage to provide power-to-heat approaches. The approach by Amin
et al. [129] established a simulated environment for electricity grid
demand prediction to match demand and generation from PV using
thermal storage. Their results show how up to 100% of PV penetration
is feasible.

Renewable energy prediction and demand-side management al-
lows to enhance energy system flexibility and reduce building energy
consumption. O’Conell et al. [130] presented rule-based strategies to
manage unexpected events translated into higher demand. Their pro-
posal led to an increase of 37% of energy flexibility, during summer,
when combining PV plus battery storage. Undoubtedly, renewable
generation and grid-adaptation should be combined with demand-side
management strategies, according to Al Dakheel et al. [26].

Table 8 summarizes the references about grid-connected renew-
able sources and buildings. Similar to previous tables, it remarks the
application field, technologies and energy model from Table 4.

5.3. Integration of BIM in smart buildings

The application of technologies like AI and big data allow for a
better energy management of smart buildings. Although still low, but
progressive, the adoption of BIM, in combination with IoT, is enabling
new ways to create a better information flow and to initiate a shift
from silo solutions to a smart ecosystem [131]. BIM paves the way for
a virtual framework, where ontological features (e.g. based on Industry
Foundation Classes (IFC) [20]) can be exploited to harmonize the
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Table 7
Demand-side management systems.

Literature Application field Technologies Model type

Bourhnane et al. [114] Appliances energy forecast artificial NN Black box
Duman et al. [65] V2G Mathematical modelling White box
Mohammadian et al. [115] V2G Data-driven Black box
Chen et al. [116] Demand-side management Mathematical modelling White box
Härkonen et al. [66] Home automation Rule-based Black box
Al Dakheel et al. [26] Flexibility & Demand response Adaptive load control Black box
Ahn et al. [117] Power prediction Long Short-Term Memory & Fourier

transformation
Black box

Baek et al. [118] Power prediction Long Short-Term Memory with PCA Black box
Wang et al. [119] Lighting management Fuzzy logic Black box
Chadoulos et al. [120] Household consumption profiling k-means Black box
Giehl et al. [121] Smart grid people-powered markets big data & AI Black box (Digital twin)
Liu et al. [122] Smart grid digital services container Data-driven Black box (Digital twin)
Table 8
Grid-connected renewable generation.

Literature Application field Technologies Model type

Pawar et al. [123] PV forecast ANN, SVM and ensemble models Black box
Yao et al. [124] PV-grid coupling Regression Black box
Al Dakheel et al. [26] PV plus storage Adaptive load control Black box
Zhou et al. [126] BIPV Mathematical model White box
Maturo et al. [127] BIPV RC model White box
Yang et al. [128] BIPV Mathematical model White box
Amin et al. [129] Electricity demand and generation Mathematical model Grey box (Physics of building)
O’Conell et al. [130] Flexibility Rule-based Black box
Alghamdi et al. [125] Power grid NN and regression Black box
interaction with the physical environment for predicted management
of energy in buildings [132]. While BIM makes possible to understand
the spatial features of the building, energy-related data characterizes
the real performance of the building [133,134].

BIM is the basis for the creation of the digital building twin [42,135]
leading to the Construction 4.0 paradigm [136]. However, digital twins
must be real-time connected to the physical assets [136] for allowing
simulation, prediction, and optimization [42,137]. When integrating
the human-interaction and supporting the bidirectional communica-
tion, the digital twin is transformed into a cyber–physical building
(CPB) [138] as a branch of cyber–physical systems.

BIM-based management creates the link between real and virtual
assets, such as the case by Zaballos et al. [139]. The authors created
digital twin models for indoor environmental quality in a smart campus
for each of the zones, increasing the accuracy of the predictions.

Smart building management cannot be only limited to the op-
erational stage, but the entire building life cycle should be consid-
ered [140]. Since the design stage, BIM, as a collaborative frame-
work, allows to manage the entire life cycle [59,141]. Coupry et al.
[136] suggested the combination of BIM and augmented and virtual
reality along with IoT data (i.e. extended reality) to detect any mis-
alignment in the construction phase or defects during maintenance
(i.e. inspection [142]). These defects could lead to lower energy per-
formance, enabling the estimation of energy resource efficiency per
building design, but also considering the construction materials [143],
which is not feasible with traditional CAD (computer-aided design)
tools.

Continuous commissioning is possible from planning/design to de-
molition by detecting discrepancies between the digital twin and the
real building behaviour [136]. This is also thanks to the new paradigm
of BIM 4D, 5D, 6D or 7D, which complements BIM with schedule,
costs, sustainable assessment (i.e. life cycle assessment - LCA) and
operation [59,144]. BIM-based methodologies reduce the time and
costs concerning LCA analysis, including: (a) energy performance due
to construction materials; (b) CO2 emissions; (c) indoor lighting; (d)
omfort; (e) waste management. In the case of renovation projects, the
se of BIM reduces the energy costs in 6.34% [145] because it supports
13

he creation of more accurate simulation models. BIM represents the
static data from a building and sets the basis for the building as a
service [141,146].

BIM itself is useful for stakeholders collaboration, as well as it
provides information for energy demand estimation, facility manage-
ment or LCA, among others [146]. IoT data is needed to represent the
real and synchronous operation of the building, while data should be
exchanged between physical and virtual assets to satisfy the require-
ments of a digital twin [135,147,148]. These digital twins facilitate the
dynamic energy simulation capabilities, relating energy consumption
and building characteristics, such as thermal resistance or mass [149].
Thanks to this, new building services arise [146], e.g. energy predic-
tions combined with AI algorithms, decision-making tools or buildings
data exchange.

Digital building twins, as synchronized with the real performance,
allow to create data-driven business models, e.g., performance-based
contracts [150]. The authors of [150] took advantage of a BIM-based
digital twin to extract the energy performance of each thermal zone
to encourage users to use resources efficiently. Nevertheless, it should
be extended to the assessment certification community, such as EPC
or other indicators for ranking buildings, where digital twins allow
dynamic operational evaluation [151].

Table 9 summarizes the analysis of the integration of BIM in the
smart building context, taking into account the references used in this
section.

5.4. Digital twin based energy management of smart buildings

Digital twins, combined with AI algorithms, are helpful to imple-
ment decision-making tools and recommend actions [39,140], reach-
ing up to 50% of energy consumption reduction [137]. According
to Pan et al. [42], the use of AI in the construction sector provides
functionalities such as visualization, modelling, simulation, analysis,
prediction and optimization, translating into digitalization, automation,
risk mitigation and high efficiency advantage.

Commonly, digital twins just consume data, but a bidirectional
link between the real and virtual assets becomes necessary, which is
known as a cyber–physical system (CPS) [152] or, in the smart building

context, cyber–physical building (CPB) [141]. CPB also enables the
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Table 9
Analysis of the integration of BIM in the smart building context.

Literature Application field Building stage Benefits of BIM

Zaballos et al. [139] Indoor environmental quality (IEQ) Operation IEQ accuracy per zone
Panteli et al. [59] BIM 4D/5D/6D/7D Building life cycle Improved collaboration during life cycle
Kaewunruen et al. [145] BIM-based retrofitting Renovation Input for simulation
Coupry et al. [136] Inspection of defects Building life cycle Overlaying BIM and extended reality to

visually detect defects
Lei et al. [142] Inspection of buildings Building life cycle Self-inspection by 3D virtualization
Klimant et al. [143] Energy resource consumption Building life cycle Materials features
Deng et al. [146] Digital building twin Building life cycle 3D model for the digital twin
Sepasgozar et al. [147] Digital building twin Building life cycle 3D model for the digital twin
Agounzul et al. [149] Digital building twin Building life cycle Building characteristics
Evangelou et al. [135] Digital building twin Building life cycle 3D model for the digital twin and static

data
De Wilde et al. [148] Digital building twin Building life cycle 3D model and IoT data integration
Spudys et al. [151] Energy performance Building operation Assets modelling
Hunhevicz et al. [150] Servitization with performance-based

contracts
Building life cycle 3D model for the digital twin

Wildenauer et al. [141] Building as a service Building life cycle BIM as core data
interaction between the building and agents (e.g., inherent electri-
cal loads, distribution system operator (DSO) and aggregators) [153].
Thus, it provides a multi-agent framework for cooperation, whereas
intelligent agents outperforms ad-hoc implementations [154], e.g., the
case of the power grid. Consumers, as active players of the new energy
markets, should be capable of interacting with the multiple elements
at smart home, which form a poly-structure [155]. In other words, the
energy system composes a hierarchical structure governed by humans.

Although CPB are usually enabled by the integration of BIM, IoT and
AI, other data-driven virtual representations of the building behaviour
(i.e., without the use of BIM advantages) are present in the literature.
This namely knowledge models move from reactive to proactive main-
tenance [136]. For instance, Saad et al. [156] used the mathematical
formulation of the grid operation to set up the CBS of the microgrid and
distributed energy resources. The goal of the authors was to increase
the resilience of the grid, similar to [157], minimizing cyber-attacks in
the electrical grid [158]. Predictive maintenance applications are also
enhanced [143].

CPB are mostly deployed for enhanced and smart building energy
management by the implementation of AI algorithms. For instance,
reinforcement learning, and in particular, Q-learning [159], is sup-
ported by the CPB environment, overcoming the calculation limits of
existing building equipment (i.e. controllers with limited computational
capacity). Katalinic et al. [154] deployed a P2P multi-agent system,
with a Markov decision process, to support decision makers decision
through well-established KPIs.

CPB also enables the capabilities for energy assessment and bench-
marking, for instance, to detect anomalous consumers or understand
energy behaviours [160] or BIM-based simulation for expected energy
consumption [140]. Segmentation techniques like k-means are usually
deployed to enlighten new areas for energy efficiency. In contrast
to traditional methods that rely on annual energy calculations, CPB
provides more insights in real building performance as they include
the capability of temporal segmentation (e.g. occupied and unoccupied
periods) [160].

Cross-vector coupling addresses the integration of different energy
vectors and infrastructures, in particular electricity, heat and gas, either
on the supply side, e.g., through conversion of electricity to heat, or at
the demand side, e.g. by using residual heat from power generation
for district heating. Several studies show that sector coupling can
contribute to lower the overall costs of the energy system. Due to the
inherent complexity, O’Dwyer et al. [161] formulated a composition of
multiple models, based on clustering techniques, which are coordinated
to predict the demand and supply sides. Thus, the initial challenge is
split into sub-problems or subsystems. For instance, the district heating
network is one of them and the objective is to reduce the financial cost
of operation.
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eVs, through V2G and G2V technologies, represents a distributed
electricity storage assets[162]. The use of CBS in the eV field enables
V2G automation and smart charge control via techniques such as neural
networks. By means of the digital twin of the battery management
system, the use of batteries as a decentralized storage element can also
be optimized [163].

The CPB represents the building scenario which makes co-simulation
strategies straightforward [164], reducing such a tedious process [30].
Nevertheless, the full potential of CPS in the building sector is not well
exploited. For example, Kong et al. [68] established a CPS scenario
for the co-simulation of building strategies for optimization of HVAC
systems, but not considering BIM as input. Tan et al. [165] combine
computer vision for better lighting control.

Table 10 overviews the usage of cyber–physical buildings in the
energy management context and the interaction with the users from
the references used in this section.

5.5. Smart readiness indicator as smart building driver

SRI is pursued by the new European directives [6] and new certifica-
tion standards [61] to achieve the sustainable development goals [3,4].
Three main aspects are the focus of SRI: buildings, occupants and
interaction with the grid [166]. The SRI is split into nine domains:
(i) heating; (ii) cooling; (iii) domestic hot water; (iv) ventilation; (v)
lighting; (vi) dynamic building envelope; (vii) electricity; (viii) electric
vehicle charging; (ix) monitoring and control, with seven impacts: (a)
energy efficiency; (b) maintenance and fault prediction; (c) comfort;
(d) convenience; (e) information to occupants; (f) health, well-being
and accessibility; (g) energy flexibility and storage. Fig. 5 [167] shows
the matrix with the domains and impacts that evaluate the score of this
indicator. Additionally, each one of the domains already defines a set
of smart services that could be existing in a building.

The calculation method sets a level of functionality (0 means no
smart operation and 4 states the highest smart level) for each of the
services applicable per domain. This level of functionality is weighted
per impact (there is a default weighting schema that can be customized
by the assessor), obtaining a matrix where the domain effect in the
impact is calculated. According to this matrix and the weighting schema
for the domain/impact marks, the final score can be obtained as a
percentage (0–100) to conclude with the smartness level (the higher,
the smarter).

Three methods for the calculation of the SRI are available: (A)
Simplified method, which limits the catalogue of services per domain
up to twenty seven, (B) Expert SRI assessment, with an extended list
of services (fifty four), and (C) In-use smart building performance,
which includes metering results [46,168]. Method A is only applicable
to residential buildings and small tertiary buildings (i.e. less than five
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Table 10
Analysis of the smart energy management through CPB.

Literature Application field Energy field Users interaction

Pan et al. [42] Construction 4.0 Thermal & electricity No
Pan et al. [140] Construction 4.0 Thermal & electricity No
Srikanth et al. [153] Building management Smart grid Yes
Katalinic et al. [154] Multi-agent smart operation Power grid Yes, decision makers
Shvedenko et al. [155] Smart home Thermal & electricity Yes, consumers
Coupry et al. [136] Pro-active maintenance Thermal & electricity No
Saad et al. [156] Microgrid resilience Electricity No
Weerakkody et al. [157] Microgrid resilience Electricity No
Lou et al. [158] Microgrid resilience Electricity No
Hosseinloo et al. [159] Energy management Thermal & electricity No
Francisco et al. [160] Energy assessment Electricity No
O’Dwyer et al. [161] Flexibility Thermal & electricity No
Rehman et al. [162] eV demand Electricity No
Bhatti et al. [163] eV demand Electricity No
Kong et al. [164] Co-simulation Thermal & electricity No
Tan et al. [165] Lighting control Electricity No
Fig. 5. Smart readiness indicator domains and impacts.
Source: [167].
hundred m2), while method C requires, at least, one year of data, being
method B the most commonly applied.

SRI is firstly used for smartness assessment of buildings. Vigna
et al. [166] ran a triage evaluation methodology (three experts) for a
single building in Italy, obtaining values between 55 and 66 out of 100.
The reason for the difference can be explained by the interpretation of
the functionalities per domain.

One of the main limitations of the SRI lies on the applicability in
cold countries [169]. It does not recognize specific features of the build-
ings in such climates zones, specially stressed when district heating
is used to supply heating and domestic hot water. The main reason
is the lack of a characterization tool for thermal energy storage at
building level (commonly used in cold countries combined with district
heating generation systems). The SRI calculator only allows using of
giant storage for the district heating itself [169]. Another limitation is
its subjective nature, as pointed by Ramezani et al. [170]. The way of
evaluating relies on experts who interpret the building features and,
according to their experience, they establish weighting coefficients.
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SRI helps decision-makers to select potential interventions (e.g. stor-
age elements) or apply smart-ready services [46]. It requires the man-
ual intervention from building’s experts to determine the levels of
functionality. To solve this issue, Markoska et al. [171] developed an
automated tool to assess SRI. The authors relied on building metadata
to be able to discover hardware equipment and software services so as
to perform a Pareto analysis in the SRI score.

SRI is increasingly integrated in the energy management of build-
ings as it allows for the detection of more intelligent strategies for
energy efficiency and comfort. For instance, Martínez et al. [172],
throughout the measure–analyse–decide-act methodology, released pre-
scriptive SRI analytics in an university campus, with a focus on the
ventilation impact, with an overall value of 16.45 out of 100, and a
low level of smartness. Gatt et al. [173] also used SRI to address nearly
zero energy buildings (nZEB) in Malta, where energy generation and
distribution are constrained due to its island character. The authors
compared, by using simulation tools, the benefits of improved energy



Renewable and Sustainable Energy Reviews 199 (2024) 114472J.L. Hernández et al.
management solutions driven by the readiness indicator as for instance
the integration of the dynamic building envelope domain.

Becchio et al. [174] simulated the improvement in terms of en-
ergy efficiency and SRI thanks of including smart-ready services in
the dynamic envelope management domain (e.g. window slat with
remote control). From the dynamic envelope rank of 19 out of 100
as baseline, the results showed that including shading control energy
achieved values of 51 out of 100, including savings vary between
6.2% and 19.7% [174], depending on the functionality level. Fokaides
et al. [175] ran a experiment in an university building in Cyprus,
where an initial score of 52 showed relatively good smartness level.
This analysis supported the definition in the field of renewable energy,
which was not originally introduced in the building. Apostolopoulos
et al. [168] compared methods A and B for retrofitting scenarios in
Denmark, Czech Republic, Greece, Bulgaria and Austria. The main
conclusion is that method B (expert method) provides lower impacts
than method A (simplified method), although method B involves a more
detailed analysis.

SRI is continuously evolving in terms of new services, changes in the
domains and/or impacts; therefore, new versions of the calculation tool
are being released. O’Connel et al. [130] assessed a flexibility indicator
and how it could be included as input for future SRI developments.
The same exercise was made by Marzinger at al. [176], but, in this
case, focused on the quantitative load shifting potential of buildings.
Within their approach, a re-definition of the SRI is proposed, where
the activity coefficient is included (i.e. interaction of the buildings and
thermal, electrical and gas grids). In this study, buildings moved from
consumers to prosumers, anticipating external stimulus (e.g. weather
conditions or users’ needs) and included storage elements (in any of
their variants) as key elements in the load shifting strategy. Similarly,
Ozadowicz et al. [177] moved towards the use of SRI and BACS
(building automation and control systems) defined in the standard EN-
15232 for heating system and DHW (domestic hot water) temperature
control, reaching up to 20% of energy savings.

Districts are not only an extrapolation of the individual SRI calcu-
lations, but also their activity should be considered. Marzinger at al.,
in a second study [178], proposed a methodology to extend the SRI
focus from buildings to districts. Basically, the authors weighted the
individual building SRI per energy demand. The authors demonstrated,
in the city of Vienna, that only active interaction among buildings
can contribute to load shifting [178]. Beyond districts, cities are being
analysed to assess their smartness level, e.g., the research conducted
by Zhao et al. [179]. The authors highlighted the importance of cross-
sector approaches and multi-index criteria, where indexes like SRI are
still far from being helpful. In this context, inter-criteria correlation
methods are mostly used [179].

It should be remarked that one of the SRI domains refers to the in-
formation to occupants, including their feedback. Dell’Isola et al. [180]
supported this domain by the joint disaggregation of electrical devices
monitoring and customized user feedback, achieving savings between
22% and 27% thanks to better informed decisions of tenants.

When it comes to certifying buildings, energy performance certifi-
cates (EPCs) are consolidated assessment tools that express building
parameters in the form of energy or environmental metrics [6]. Nev-
ertheless, these are mainly steady-state [174], without considering
human habits and dynamics of buildings.

The next generation of EPCs become the future to combine tradi-
tional techniques with SRI. According to Li et al. [60], an study realized
in Belgium demonstrated that 50% of buyers took the EPC into account
when buying the building. The integration of the SRI would give the
EPC more accurate information, such as occupancy factors, behaviour,
other data thanks to smart-ready services in charge of self-inspection
(i.e. without needing an external assessor), as well as would impact in
the EPC score thanks to the benefits of the building energy management
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systems (control algorithms are not considered in EPCs) [60].
EPC and SRI are not directly interconnected. For instance, Fokaides
et al. [175], obtained relatively high values of SRI (52 out of 100 in
a university building in Cyprus), which contrasts with relatively low
values of EPC (label D for that case). The reason behind this is the fact
that EPC does not consider smart services [181]. Koltsios et al. [181]
expanded the EPC calculation rating by including SRI, LCA (life cycle
assessment), LCC (life cycle cost) and human comfort. They proposed
a dynamic way to calculate the EPCs by integrating IoT data, BIM
(to extract building characteristics) and external sources (e.g. weather
services).

Bisello et al. [182] analysed this new trend from the hedonic price
perspective. That is, improving the energy efficiency and smartness of
building in order to encourage people to invest in energy efficiency
measures where the return of expenditures are sufficiently high. Their
study in the city of Bolzano conducted price premium (relative price
with respect to the current practices) on the residential market varies
between 6.3% for label A label, 5.4% in case of B and 2.9% for C [182],
even further increased with the SRI integrated. This work demonstrated
the attractiveness of the new certification models for future building
stock markets, either real state or end-consumers. This is the clear ex-
ample of Malta, where nZEB (nearly zero energy buildings) are fostered
according to the combined EPBD certification schemes plus SRI [173].
In fact, investors in the UK, Ireland, Germany and Denmark are ready
to pay more when energy efficiency requirements are met [60].

However, one of the major concerns is the economic viability.
Janhunen et al. [183] conducted an analysis based on cash flow. An
investment of 6 Me for PV plus battery and systems integration was
made in a commercial building in Finland, reaching 91 out of 100 for
SRI mark. The results demonstrated the attractiveness of this kind of
investments, obtaining 10 years for payback period and 10% of return
of investment (without subsidy from government) [183].

6. User empowerment technologies: Services for end-consumers

The main beneficiaries of the buildings are the end-consumers
and/or owners [15]. According to the SmartBuilt4EU initiative (EU
Smart Building Community) [16], a key aspect for success in smart
buildings is the interaction between end-consumers and buildings.
Buildings are weakly adapted to the multiple and diverse users’ pro-
files [48]. Users have different comfort perceptions [48], but smart
buildings should consider user preferences [70] in their operation.

Energy efficiency is not only the objective, but thermal comfort,
satisfaction/well-being, lighting comfort or indoor air quality, among
others, are also of paramount importance. Hence, homeowners should
be able to interact with the facilities, such as setting their preferred ini-
tial set-point temperature, their preferred times of operation ranges for
the thermostatic valves, hot water usage times, and preferred charging
times of eV [65]. Nevertheless, as presented in Section 5.1, although
the application of energy management strategies benefits the user
comfort by establishing set-point temperature [68,69], many researches
do not consider the user preferences. In this line, the AI is a driver
to promote indirect energy savings through behavioural change [31],
where the combination of algorithms with feedback from the end-
users [184] makes understandable the consumers demand [185] and
allowing users to use the energy facilities in a more efficient manner.
Such an analysis was conducted by Hosseinihaghighi et al. [186] in
households in Canada, where occupants behaviours were clustered
obtaining differences of set-points for heating up to 5 ◦C.

Having said that, traditionally passive end consumers are turned
into active market players with role of prosumers [65]. However, taking
active participation means accessing building information and being
aware of the energy use. As stressed by Dell’Isola et al. [180], users’
awareness is crucial and it can be exploited by end-user applications.
They provided detailed information on the energy use of the appliances,
as well as benchmarking indices on expected consumption based on
behavioural changes.
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Fig. 6. Elements to be considered within the users’ empowerment apps [84].
According to Daissaoui et al. [84], users’ apps should be composed
by sensor data and networks, as well as analytics with the support
of big data techniques. Fig. 6 [84] depicts these key elements that
make the users app attractive for the users’ awareness. Additionally,
the human subject-related factors should be taken into account [72].
This is the case of the analysis conducted in [120], where demand
response programmes were integrated to adapt algorithms according
to users’ preferences. Both motivation, engagement and empowerment
of users were achieved with gamification, information provision [187]
and rewards. Gamification tools bring smart buildings closer to the
end-users, i.e. they empower them.

Interaction with the users is also addressed with the CPB (cyber–
physical building) approach, as stated before. Konstantakopoulos et
at. [188] made use of the CPB approach to provide human-centric
solutions. Through deep-learning methods (particularly long short term
memory cells), the tool learned about the occupants’ preferences and
how these change according to manual control of assets. A point reward
algorithm was also introduced to incentive energy-efficient use of the
facilities [188], such as it is demonstrated with the air-conditioning and
ceiling fans.

Even though the user’s habits are usually repetitive, these can
be modified due to unforeseeable situations (e.g. COVID-19), there-
fore, requiring adaptive algorithms. Occupancy information becomes
necessary for the proper management of buildings [49]. Two types
could be extracted [189]: spatial–temporal and behavioural proper-
ties. Solutions like occupants and resources location tracking [84] are
able to obtain the presence, location and track of the end-consumers.
Malatesta et al. [187] made use of k-means clustering to understand
the occupants’ routine and energy intensive periods along the year.
Other studies make use of CO2 sensors in combination with power
consumption of the lighting system, indoor temperature and humidity
to apply machine learning models, such as vertical Hoeffding tree
(VHT) in [190], reaching up to 98.7% accuracy in the behavioural
forecasting. WiFi connection techniques merged with artificial NN pro-
vide accurate methods to detect not only occupancy, but also counting
people [191] to support the calculation of thermal loads. In this line,
Amayri et al. [192,193] deployed interactive learning techniques to
exchange information with the users so as to determine the number
of occupants in an office building.

Numerous studies focus on users’ empowerment, considering it
a crucial aspect. However, there exists a noticeable gap in consen-
sus between energy-efficient algorithms and user behaviour. While
many energy management analyses prioritize optimizing energy sav-
ings, the connection with living spaces and user experiences is often
overlooked. Initiatives like the European Bauhaus [194] advocate for
user needs beyond functionality, emphasizing inclusiveness and har-
mony with nature, among other aspects. Methodologies such as co-
creation, co-design, and co-development should thus be integrated into
smart energy management. This leads to open research opportunities,
as detailed in Section 7, including concepts like human cyber–physical
systems or user-centric algorithms, with the objective of empowering
consumers in the smart building management process.
17
7. Opportunities in smart buildings: Open research activities

Many advances have been made in the field of smart buildings.
However, there are still other open research activities to continue
approaching smarter buildings. This section describes the main op-
portunities that are envisioned. Three categories are considered: (1)
smart energy management; (2) integration of BIM, digital twins and
cyber–physical systems; (3) SRI and next generation EPCs.

7.1. Opportunities in smart energy management

AI and big data techniques have provided many advances in the
management of energy facilities in buildings. Indeed, they are increas-
ing the energy savings, while ensuring comfort levels, thus, promoting
more efficient building stock. Open research opportunities persist in
this field, as summarized in Table 11, aligning with the challenges
addressed in Section 3.1. Foremost, the importance of data efficiency
and quality—crucial factors in training algorithms are emphasized.
Two key opportunities have been identified: (a) enhancing data sample
efficiency to ensure comprehensive datasets covering building thermo-
dynamics (e.g., thermal inertia); (b) minimizing data noise, including
biases and outliers. Both aspects aim to enhance the accuracy and
resilience of algorithms [125], which are still exhibiting discrepancies
compared to real building behaviour. Additionally, a novel trend in
smart building contexts involves the integration of blockchain technol-
ogy through smart contracts. This integration allows for pre-processing
data and implementing data cleansing and redundancy algorithms [75].
This innovative approach showcases a promising avenue for further
exploration.

Algorithms themselves present opportunities, particularly in terms
of complexity. For example, ANNs often require a significant number
of input controlling parameters [30], information not typically known
by end-users. Additionally, these algorithms demand large datasets,
leading to extended training times, rendering a plug & play AI-based
controller for HVAC systems practically unfeasible [90]. Simplifying
these algorithms has dual benefits—it enhances user awareness and
participation while also facilitating replicability through plug & play
capabilities.

Another crucial consideration is the enhancement of resilience – an
integral domain within the SRI – aiming to amplify indirect energy
savings [147] while concurrently enhancing comfort. Algorithms play
a pivotal role in foreseeing and promoting the proactivity of buildings
to bolster resilience. This is closely tied to the maximization of re-
newable energy sources to meet higher-than-expected energy demands,
thus preventing energy wastage [16]. Algorithms are instrumental in
aligning demand with consumption through the detection of demand
and generation patterns.

Furthermore, the integration of additional data sources can enhance
the functionalities of algorithms. An illustrative case is the incorpora-
tion of built-in building management systems (BMS) to support energy
assessment tools and energy-efficient control mechanisms [175]. An-
other instance involves broadening the availability of connected assets
and loads to optimize the management of multiple home and building
energy systems [66], achieved through interoperability aspects [195].
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Table 11
Research opportunities in smart energy management of buildings.

Topic of research Factors to address Benefits Challenges

Data efficiency and quality Data sample efficiency and noise
reduction

Higher accuracy Low quality and insufficient
amount of data

Data efficiency and quality Data quality methodologies and
cleansing

Improved trained algorithms Low quality and insufficient
amount of data

Algorithms complexity Making them understandable for
end-consumers

Users awareness and participation Absence of significant customer
awareness

Training periods Time intensive and complex to deploy
plug&play solutions

Replicability Smart energy operation and
maintenance

Resilience Pro-activity of buildings to anticipate
malfunctioning

Higher comfort Smart energy operation and
maintenance

Renewable maximization Demand-consumption matching
algorithms

Avoid waste energy Smart energy operation and
maintenance

Data integration Built-in building management systems
(BMS)

Enhanced functionalities Low penetration of BIM
methodologies

SRI-driven algorithms SRI as trigger of the algorithms Smarter buildings Big data and AI to exploit the big
amounts of data

User-centric algorithms Algorithms addressing users’ feeling
(e.g., fuzzy)

Users as core Absence of significant customer
awareness

Decision-support tools Extract value from data (i.e., key
performance indicators)

Better informed decisions Absence of significant customer
awareness
In conclusion, the development of SRI-driven algorithms, where
RI acts as a trigger for the control policy [46], is a pivotal aspect
n promoting smarter buildings. Implementing SRI ensures the appli-
ability of smart services across various domains, thereby enhancing
he intelligent operation of buildings. SRI, by placing users at the
ore of building operation, necessitates the adaptation of user-centric
lgorithms (linked to the complexity aspects mentioned earlier) and
ddressing the uncertainties associated with human feelings. Methods
uch as fuzzy logic, which can handle the variability of comfort feel-
ngs [30], are underutilized. Additionally, decision-support tools should
erve as the driving force for energy managers, employing big data and
I methods [147].

.2. Opportunities in BIM-CPS integration

New policies regarding BIM allow for the integration of metadata
n buildings to obtain characteristic of construction elements (such as
aterials, thermal zones, etc.). BIM also supports the creation of digital

uilding twins, which integrated with IoT data encompasses cyber–
hysical buildings (CPB). Considering this perspective, opportunities in
he utilization of BIM in smart buildings are outlined in Table 12. It is
vident that one of the primary advantages of BIM is its contribution
o decentralization and collaboration within the construction sector,
acilitating self-assessment and self-operation of the building stock. The
ntegration of CPB throughout the building life cycle fosters intelligent
echanisms for building management, leveraging novel paradigms

uch as the identification of thermal zones for the implementation of
ine-grain control strategies.

Human-cyber–physical systems (HCPS) enhance the integration of
PS in building management through user feedback, contributing to

mproved comfort strategies [140]. Given that buildings are designed
or occupants, ensuring comfortable conditions is paramount. HCPS
acilitates algorithm adaptability, enhancing comfort across all zones
nd living spaces. Information derived from BIM provides localization
f thermal areas and enables the amalgamation of diverse data in
igital building twins [195], aiding in the identification of building
reas for local control strategies. BIM models enrich algorithms with
ontextual information not typically present in time-series data used
or training. This, in turn, contributes to the creation of well-informed
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environments for decision-making [106], streamlining the often tedious
task of model calibration without a physical foundation [109].

Furthermore, the utilization of digital twin technology in civil en-
gineering is still in its early stages. BIM holds significant potential to
efficiently synchronize and store data continuously collected from IoT
devices. Consequently, this technology can facilitate a synchronized
interaction between physical and virtual entities for simulation [140],
introducing novel approaches for grey models through the joint use
of simulation tools with BIM [91]. These advancements pave the way
for the next generation of digital twins, expanding the concept into
multi-building interactions, such as districts. This evolution involves
establishing communications between buildings and new interfaces
with various data sources, including renewable sources [146].

7.3. Opportunities in the smart readiness indicator

The integration of the SRI indicator in the energy management and
certification of buildings provides many benefits. First and foremost,
attention is drawn to the next generation EPCs, which encompass
both buildings and smart-ready services as defined in the standard
EN-15232 [60]. A key advantage is the provision of a more reli-
able EPC, taking into account not only the energy demand but also
factors such as heating set-points. This comprehensive approach en-
riches existing datasets with metadata and aligns with SRI certification
schemes [60]. Table 13 succinctly summarizes the opportunities in this
domain, outlining the benefits and mapping the challenges identified
in Section 3.1.

The SRI also holds promise in the energy management of build-
ings. Applying more objective methodologies for the development of
energy-efficient buildings throughout their lifespan is feasible [177].
The SRI methodology addresses the uncertainties associated with the
current subjective nature of assessments [169], a concern that becomes
especially pronounced when a custom approach is chosen over the
default weighting method. Therefore, SRI serves as a reliable driver for
seamlessly integrating self-assessment services.

In conclusion, the SRI methodology opens up new possibilities for
demand response approaches by leveraging information from appli-
ances (e.g., number of fridges, cookers, occupancy levels, etc.) [175].
By utilizing the services catalog provided by the calculation procedure,
the next generation of services can be implemented to create smarter
and, consequently, more efficient buildings.
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Table 12
Research opportunities in BIM-CPS integration.

Topic of research Factors to address Benefits Challenges

BIM databases Decentralization and collaboration
in the construction sector

Better communication process Low penetration of BIM
methodologies

Human-CPS (HCPS) Human behaviour and feedback
integration

Improved comfort Absence of significant customer
awareness

Data integration Model calibration needs reduction Better accuracy Low quality and insufficient
amount of data

Digital building twins Better informed environments Improved decisions Promotion of digital building
twins
Table 13
Research opportunities in smart readiness indicator.

Topic of research Factors to address Benefits Challenges

Next generation EPCs Dynamics data integration in EPC
with SRI

More accurate EPCs Low quality and insufficient
amount of data

SRI-driven algorithms SRI as trigger for the energy
management algorithms

Smarter buildings Smart energy operation and
maintenance

Self-assessment SRI as smart indicator for
buildings evaluation

New services Smart energy operation and
maintenance
8. Conclusions

Smart buildings are a current trend in the scientific community,
above all, thanks to the inclusion of technologies such as big data,
IoT and AI in the life cycle of the building management. Many efforts
have been placed in implementing more intelligent energy management
strategies for higher energy savings and enhanced indoor comfort
conditions. This study has reviewed the techniques that have been de-
veloped during the last two years to extract opportunities for upcoming
researches according to the limitations that are currently detected in
the state of the practice.

The construction sector is currently undergoing a digitalization
process, in which new data comes into play. This is the case of BIM
that represents the building features (e.g. materials, spaces, thermal
zones...). BIM is the enabler for new concepts of digital building twins,
where the combination of BIM plus IoT provides more evidences of
building operation and maintenance patterns. Moreover, it enhances
the management of the whole life cycle of the buildings, it supports
the collaboration amongst stakeholders, and enables additional capa-
bilities for energy management (such as grey models and co-simulation
strategies).

The integration of BIM together with AI-based algorithms allows
energy management systems to increase their accuracy compared to
current techniques and methods. However, this implies an increase in
data processing, which, coupled with the current complexity of the
algorithms applied, makes training times unmanageable. At the same
time, this complexity also leads to increased reluctance among final
users due to non-understandable algorithms and the lack of interaction
without the use of co-creation techniques. Scientific community should
not forget buildings are for the occupants and their comfort. Techniques
like fuzzy logic in new energy management strategies can be beneficial,
as they enable to deal with the uncertainties and imprecise inputs
associated to human factors such as users’ feelings and preferences. All
in all, the integration of new data from BIM, placing users the core of
the smart building, and having better-informed decision-making tools
would provide inhabitants with capabilities of determining current
energy behaviour to adapt their needs.

In this survey, the new approaches, techniques and methodologies
for the smart management of energy facilities have been analysed,
including the sector coupling researches. Moreover, the integration of
contextual data (such as BIM) and SRI-driven strategies have been
19
discussed, where the clear impact of the SRI in the next generation
of buildings has been identified. In this line, the benefits and ad-
vantages of the integration new data-sets (BIM, building logbooks,
among other) and the proper use of the SRI methodology have been
included. As the SRI is a European initiative, the focus of this review
has centred on European countries. However, apart from this indicator,
the conclusions drawn from the study can be extrapolated to non-
European countries. The key findings reveal new directions that can
be categorized into three levels: smart energy management strategies,
integration of BIM/CPS, and SRI utilization. In terms of smart man-
agement, it is evident that data efficiency and quality pose challenges,
resulting in prolonged training periods and less resilient algorithms.
Addressing these limitations in the next generation of buildings requires
the implementation of data quality methodologies for data cleaning.
Additionally, current AI-based algorithms primarily focus on energy
efficiency, often overlooking users’ feedback and comfort enhancement.
To overcome these shortcomings, simplification is necessary, comple-
mented by new procedures to handle comfort uncertainties, such as the
application of fuzzy logic.

In relation to BIM, this information serves as a valuable complement
to the current time-series data utilized in the training processes. BIM
facilitates the localization of sensors, thermal zones, and spaces within
the building. This localization capability allows for the implementation
of local algorithms that are not only more accurate but also simplify
the complexities associated with large buildings. Moreover, it propels
us into a new era of digital building twins, characterized by interactive
and proactive buildings that create better-informed environments. This
integration extends to human behaviour, streamlining the process for
model calibration.

Last but not least, the SRI fosters innovative methodologies for
building assessment and consequently introduces new services, partic-
ularly in terms of self-assessment. The utilization of SRI as a trigger
for smart energy management algorithms, coupled with the services
catalogue it provides, enables the creation of smarter buildings. Ad-
ditionally, SRI contributes to the evolution of energy performance
certificates (EPCs) from static to dynamic, incorporating real-time data
for more accurate EPC certification. This dynamic approach not only
enhances demand strategies but also provides a comprehensive under-
standing of the building’s energy usage. SRI is still subjective and lacks
of common, reliable and high-quality data for a proper analysis. Then,

future trends should address the use of building data to determine
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new EPC plus SRI calculation methodologies in order to foster new
regulations for smart buildings.
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