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A B S T R A C T

The accurate forecasting of photovoltaic (PV) power generation is of great significance in renewable energy
systems, as it enables optimal energy management and grid stability. Despite the importance of this issue,
substantial limitations still exist in the majority of existing research initiatives, which employ shallow machine
learning algorithms. Recently, some studies have proposed employing convolutional and long short-term
memory neural networks (LSTMs) in conjunction with transfer learning techniques; however, these approaches
require that the production of PV systems is known during training. To overcome these limitations, we
present the first study in the task of PV power forecasting utilizing unsupervised domain adaptation methods.
Specifically, we employ two unsupervised methods, namely Domain Adversarial Neural Network and Margin
Disparity Discrepancy. Both approaches use a source and a target domain during training, where the target
labels of the target domain are unknown during training. We use production and weather data from seven PV
systems with nominal capacities ranging from 23.52 kW to 271.53 kW, located in different areas. The findings
demonstrate that our proposed architectures improve root mean squared error (RMSE), normalized RMSE,
and 𝑅2 scores over the smart persistence model across all the PV systems used for testing. Furthermore, our
approaches improve the performance of the smart persistence model, with a forecast skill index reaching up
to 45.35%. Our extensive experiments demonstrate that our introduced approaches offer valuable advantages
over state-of-the-art ones, as the target variable of the target domain is unknown during training. We also
demonstrate the robustness of our approaches by conducting a series of ablation experiments.
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1. Introduction

The rapid deployment of photovoltaic (PV) systems has prompted
a heightened need for accurate prediction of their energy produc-
tion, especially in light of the stochastic formation and movement of
clouds [1,2]. Developing forecasting models based on field measure-
ments and weather data is critical for the efficient operation of PV
systems. Accurate forecasts offer a host of benefits, particularly for
the owners of residential and industrial PV systems. By enabling the
maximization of self-consumed energy, precise forecasts can facilitate
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the operation of these systems at or beyond grid-parity levels [3].
Furthermore, utility-scale PV systems depend on these models to plan
plant downtime for maintenance purposes [4] and to optimize supply
offers in day-ahead electricity markets, thus avoiding penalties and
reduced revenues [5]. Additionally, large energy entities such as Dis-
tribution System Operators (DSOs) and Transmission System Operators
(TSOs) rely on accurate predictions to manage the intermittent nature
of grid-connected distributed PV systems [6]. Such forecasts improve
reliability, reduce costs, and enable solar energy trading, leading to
improved grid management, stability and security [7]. Accuracy predic-
tions may also result in a decreased number of units in standby mode,
which would lead to decreased operational costs for the entire power
grid [8,9]. Thus, forecasting of energy production from PV systems
has emerged as a crucial factor in optimizing the efficient operation
of energy systems.
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Deep learning (DL) has emerged as a powerful tool in many fields,
including energy forecasting [10]. As a result, DL models have been
increasingly utilized for forecasting PV power output due to their ability
to capture complex, nonlinear relationships between input features and
output targets [11–13]. However, the effectiveness of these models is
highly dependent on the availability of sufficient training data, which is
a critical challenge in the field of PV power output forecasting. DL mod-
els, while highly accurate in their predictions, are often data-hungry
and require a substantial amount of data for effective training [14].
This data dependency sets DL models apart from traditional time series
forecasting techniques and machine learning (ML) models. However,
this dependency is offset by the improved predictive capabilities of
DL models. Nevertheless, it is widely recognized that insufficient data
results in under-fitting and leads to poor model performance, resulting
in high variance estimation. This issue is commonly referred to as
data scarcity, where the limited availability of training data poses
a significant challenge in effectively training DL models to forecast
PV power output [15]. Data scarcity in the context of PV production
forecasting can occur in two forms. Firstly, it is a common occur-
rence for newly installed photovoltaic systems, as collecting sufficient
power output data to train models requires a considerable amount of
time. Secondly, missing data values or gaps in data may arise due
to malfunctioning smart-meters, resulting in a lack of data for model
training [16]. In both cases, the lack of data for DL model training
presents a significant challenge. According to literature, at least one
calendar year of training data is necessary to enable the model to learn
seasonal patterns in PV production forecasting [17]. To mitigate the
issue of data scarcity, a model trained for one location can be utilized
for forecasting at another location where there is insufficient historical
data. This approach leverages the transferability of DL models and has
been shown to produce promising results in dealing with data scarcity.

To tackle the aforementioned limitations, we exploit two unsuper-
vised domain adaptation methods, namely Domain-Adversarial Neural
Network (DANN) [18] and Margin Disparity Discrepancy (MDD) [19].
The original DANN introduced by Ganin et al. [18] was developed for
classification. Similarly, the authors in [19] designed their approach
for multiclass classification tasks exploiting the cross-entropy loss func-
tion. In our study, we modify DANN and MDD, so as to ensure that
these approaches are suitable for regression tasks. Regarding DANN,
it consists of a feature extractor, domain classifier, and regression
predictor. Similarly, MDD comprises a feature extractor, main, and
auxiliary functions (neural networks). In both cases, we use a long
short-term memory (LSTM) layer coupled with a transformer encoder
as the feature extractor. We use data from seven PVs. Specifically, one
PV is used for the source domain and the other six ones for the target
domain. The predictions/regression outputs of the target domain are
unknown during training. We test our proposed approaches on the
target domain. Finally, we perform an ablation study and show the
effectiveness of our introduced architectures. Findings indicate that
domain adaption methods yield satisfactory results for the PV power
forecasting in the absence of the target prediction data. There is no
prior work employing domain adaptation methods in the task of PV
power forecasting.

Our main contributions can be summarized as follows:

• To the best of our knowledge, this is the first study utilizing
unsupervised domain adaptation methods in the task of PV power
forecasting.

• We use data from seven PV systems with different nominal ca-
pacities and compare our introduced approaches with a smart
persistence model.

• We perform a series of ablation experiments to prove the effec-
tiveness and robustness of our proposed approaches.

The rest of the paper is organized as follows. Section 2 provides a
2

literature review on short-term PV forecasting, while it also provides
a background in terms of the domain adaptation algorithms. Section 3
describes the task, provides details of the datasets used, presents the
proposed methods for forecasting the PV power, and describes the
evaluation metrics used for assessing the performance of the introduced
approaches. Section 4 presents the experimental setup, the results of
the proposed approaches, while a series of ablation experiments is also
presented. Concluding remarks and plans for future work are provided
in Section 5.

2. Related work

2.1. Short term PV forecasting

Short-term PV forecasting refers to the prediction of solar energy
production from PV systems over a relatively short time horizon,
typically ranging from a few minutes to a few hours ahead [20].
Short-term PV forecasting is essential for the efficient operation and
management of PV systems, as it allows grid operators and energy man-
agers to anticipate fluctuations in energy supply and demand and take
appropriate actions to ensure grid stability and optimize energy use.
Short-term PV forecasting can be accomplished using various methods,
including statistical models, ML algorithms, and physical models based
on meteorological data or numerical weather predictions (NWP). The
accuracy of short-term PV forecasting is critical, as even small errors
can lead to significant economic and environmental impacts.

While statistical models, ML algorithms [21], and physical mod-
els based on meteorological data have traditionally been used for
short-term PV forecasting, recent research underscores the remark-
able potential of DL techniques in outperforming these conventional
methods in terms of accuracy and reliability. DL algorithms excel at
handling vast datasets and capturing intricate nonlinear relationships,
rendering them exceptionally well-suited for the inherently variable
and dynamic nature of PV power production. Notably, the capability
of DL models to harness historical data on solar irradiance and PV
system performance empowers them to discern intricate patterns and
relationships governing energy production. Consequently, DL models
can make highly accurate predictions of energy output over short time
horizons [22].

For instance, Aslam et al. [22] found that in various forecasting
applications, hybrid DL algorithms consistently achieved superior pre-
diction accuracy compared to conventional methods. Moreover, these
hybrid DL schemes demonstrated enhanced resilience to data incom-
pleteness, a challenge often encountered in real-world PV forecasting
scenarios. Similarly, Korkmaz et al. [23] proposed a novel photovoltaic
power forecasting system that integrates a deep Convolutional Neural
Network (CNN) structure and an input signal decomposition algorithm.
Experimental results from their study unequivocally affirmed that this
DL-based approach outperforms traditional regression algorithms, de-
livering competitive and robust performance. Furthermore, Agga et al.
[24] introduced a hybrid DL architecture that combines the strengths
of the long short-term memory (LSTM) and CNN. In their comparative
analysis against other ML models such as Linear Regression (LR), k-
Nearest Neighbors (KNN), and Decision Tree Regression (DTR), the
CNN-LSTM model consistently demonstrated higher prediction accu-
racy. These real-world examples emphasize that DL methods, such as
CNN-LSTM, offer a substantial advantage over conventional models in
capturing the complex dynamics of PV power production, because of
their capacity to extract nuanced patterns from data.

DL models, such as recurrent neural networks (RNNs) and their
special class, LSTM networks, have been widely used for short-term
PV forecasting. LSTM models are capable of incorporating nonlinear,
data-dependent controls into the RNN cell, ensuring that the gradient of
the objective function with respect to the state signal neither vanishes
nor explodes. A study by Wen et al. [25] used a deep LSTM model to
predict hourly PV production at short-term horizons based on sched-

ule, weather, and timescale variables, with the objective of optimally
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dispatching the load of a community microgrid. Results showed that
LSTM models were more accurate than other ML algorithms. Similarly,
the authors in [26] exploited LSTMs to forecast the PV output power
and compared LSTM with shallow ML algorithms, including Support
Vector Regressor, and Adaptive Neuro-Fuzzy Inference System (ANFIS).
Findings suggested that LSTM exhibited the lowest testing RMSE and
MSE values. Also, the study [27] compared LSTMs with Multilayer
Perceptron (MLP) algorithm and stated the superiority of LSTMs. Other
studies, such as Lee et al. [28] and Wang et al. [29], proposed hybrid
models that combined CNN and LSTM networks for day-ahead PV pro-
duction forecasting. These studies concluded that the performance of
CNNs and LSTMs varies for different forecasting horizons. Similarly, the
authors in [30] introduced a hybrid model consisting of Dilated CNN,
BiLSTM, and attention mechanism and proposed a transfer learning
strategy. The authors stated that the introduced approach was superior
to other models in both the accuracy and the stability.

Except for the aforementioned models, CNNs have also been popular
in PV power forecasting, mainly due to their ability to process data
with grid topology features and efficiently extract hidden structures and
inherent features. Zang et al. [31] used popular CNN architectures, such
as ResNet and DenseNet, for day-ahead PV production forecasting and
compared their performance with statistical, natural, ML, and standard
CNN models, reporting encouraging results. Ensemble learning, where
multiple models are aggregated to make a prediction, has also been
shown to be effective for short-term PV power forecasting [32,33]. The
most typical studies in the literature are the ones by Zhu et al. [32]
using a simple average ensemble, while Liu et al. [34] employed a
weighted average ensemble model. Some studies have also considered
meta-learning for PV power forecasting, such as Lateko et al. [35],
who proposed a RNN-based meta-learner that combined the forecasts
of five base models, and Eom et al. [36], who proposed a CNN-
based feature-selective meta-learner that blended the forecasts of two
statistical models and a LSTM.

While DL models have demonstrated impressive accuracy in short-
term photovoltaic power forecasting, it is important to note that these
models require significant amounts of training data [37]. This raises
concerns regarding their reliability and robustness when applied to
new and unseen scenarios, such as when limited or no training data is
available. Thus, there is a pressing need to investigate the performance
of DL models under such conditions and to explore techniques for
improving their generalization capabilities.

2.2. Domain adaptation - Background

Over the years, there have been proposed several domain adaptation
methods for minimizing the harmful effects of domain shift. These
methods can be categorized into supervised and unsupervised ones. In
terms of the supervised domain adaptation methods, both the source
and target domains have labeled data. On the contrary, regarding
unsupervised domain adaptation methods, there are labeled data only
in the source domain, while the labels/predictions are unknown in
the target domain during training. Also, the authors in [38] have
categorized domain adaptation methods into instance-based strategy
and feature-based strategy. With regards to the instance-based strategy,
the source instances are reweighted in the loss during training. In
terms of the feature-based strategy, this strategy aims at finding a new
representation of the input features in which the source and target
distributions match.

Adversarial training is widely used in the field of domain adap-
tation. Specifically, the authors in [18] have introduced Domain Ad-
versarial Neural Network (DANN), which constitutes an unsupervised
domain adaptation method. DANN consists of a label predictor, which
predicts class labels and is used both during training and test time, and
a domain classifier, which discriminates between the source and target
domains and is used only during training. A gradient reversal layer
3

is also exploited, where the input remains unchanged during forward
propagation and reverses the gradient by multiplying it by −1 during
the backpropagation. An adversarial learning setting was also proposed
by Tzeng et al. [39] and Shen et al. [40]. Ref. Tzeng et al. [39] chooses
the adversarial loss type with respect to the domain classifier and the
weight sharing strategy. The authors in [40] introduced WDGRL, a
modification of DANN, which aims at minimizing the empirical Wasser-
stein distance in an adversarial manner. Research work Zhang et al.
[19] introduced Margin Disparity Discrepancy (MDD) and provided
margin-aware generalization bounds based on Rademacher complex-
ity. Ref. Long et al. [41] introduced Conditional Domain Adversarial
Networks (CDANs), which are based on a novel conditional domain
discriminator conditioned on the cross-covariance of domain-specific
feature representations and classifier predictions.

Maximum Mean Discrepancy (MMD) is a distance between embed-
dings of the probability distributions in a reproducing kernel Hilbert
space [42]. MMD is a two-sample statistical test of the hypothesis that
two distributions are equal based on observed samples from the two dis-
tributions. The authors in [43] modified MMD and introduced Feature
Selection with MMD (f-MMD) for finding features, which contribute to
the distance between the two domains the most. CORrelation ALign-
ment (CORAL) [44] constitutes an unsupervised domain adaptation
method, which minimizes domain shift by aligning the second-order
statistics (covariance) of source and target distributions. This method
does not require any target labels. DeepCORAL [45] constitutes an
extension of CORAL, where the authors propose a method for learning
a nonlinear transformation that aligns correlations of layers’ activations
in deep neural networks

2.3. Related work review findings

In reviewing the existing body of literature on short-term PV power
forecasting, it becomes evident that prior research has predominantly
centered around the utilization of ML techniques. Notably, these ap-
proaches have commonly operated within the context of supervised
learning, relying on access to output variables, i.e., known power
values, historical weather data etc. during training. Furthermore, a
shared characteristic among these methodologies is their substantial
data requirements, demanding ample training data for model develop-
ment.

While these existing efforts have contributed valuable insights and
techniques to the field of PV power forecasting, a distinct gap emerges.
Specifically, the gap centers on the challenge of adapting forecasting
models to scenarios where power output remains unknown during
the training phase. This pivotal gap emphasizes the need for novel
approaches capable of predicting PV power production in short term
horizons without the luxury of output data for training. In the real
world, this can be the case for newly installed PV systems, or in cases
that sensors have not been installed during the PV installation.

Therefore, in this study we depart from the conventional paradigm
and frame PV power forecasting as an unsupervised domain adapta-
tion task. Through a series of rigorous experiments, our study aims
to demonstrate the noteworthy advantages offered by our proposed
domain adaptation approaches. By enabling accurate PV power pre-
dictions without requiring access to output variables during training,
our research addresses a critical need within the field and pioneers an
innovative path towards more robust and adaptable forecasting models.
This distinct approach showcases the novelty and practical relevance of
our study, contributing to the growing body of knowledge in PV power
forecasting under data scarcity scenarios.

3. Materials and methods

3.1. Task

We define the PV power forecasting task as an unsupervised domain

adaptation task. Specifically, in the unsupervised domain adaptation
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Table 1
Overview of the dataset used.

Datetime Humidity Temperature cloudcover windspeed kmph Solar W/m2 Diffuse solar W/m2 Produzida Year Month Day timestamp

0 2018-08-01 02:00:00 82 17 0 17 0.0000 0.0000 0.00 2018 8 1 02:00:00
1 2018-08-01 03:00:00 84 17 0 17 0.0000 0.0000 0.00 2018 8 1 03:00:00
2 2018-08-01 04:00:00 86 17 1 16 0.0000 0.0000 0.00 2018 8 1 04:00:00
3 2018-08-01 05:00:00 87 17 1 15 0.0000 0.0000 0.00 2018 8 1 05:00:00
4 2018-08-01 06:00:00 88 17 2 14 0.0000 0.0000 0.00 2018 8 1 06:00:00
5 2018-08-01 07:00:00 79 19 1 15 3.4164 2.4406 0.00 2018 8 1 07:00:00
6 2018-08-01 08:00:00 70 21 1 15 107.1310 38.5490 0.75 2018 8 1 08:00:00
7 2018-08-01 09:00:00 61 23 0 15 292.9205 66.6320 4.75 2018 8 1 09:00:00
8 2018-08-01 10:00:00 55 25 0 14 487.4875 79.1451 9.50 2018 8 1 10:00:00
9 2018-08-01 11:00:00 49 27 0 13 660.1908 92.4183 13.50 2018 8 1 11:00:00
10 2018-08-01 12:00:00 42 30 0 12 793.2076 111.8966 15.75 2018 8 1 12:00:00
i
b

𝑀

w

m

task, we have access to data from two domains-PV systems. The one
domain constitutes the source domain with features 𝑋𝑠 ∈ 𝑛×𝑇 , where
𝑛 denotes the lag variable and 𝑇 the number of features, and target
labels 𝑌𝑠 ∈ 𝑙. The second domain constitutes the target domain,
where we do not have access to the output variable during training.
Target domain consists of a feature set, namely 𝑋𝑡 ∈ 𝑛×𝑇 . We use as
source domain a PV system, which is denoted by 𝑃𝑉 1 and is located
in Lisbon with a nominal capacity accounting for 23.52 kW. We use as
target domains the rest of PV systems, i.e., 𝑃𝑉 2 − 𝑃𝑉 7, with nominal
capacities ranging from 30 kW to 271.53 kW. The task is to predict the
power of the target domains-PV systems.

3.2. Data

We exploit data from seven PV systems consisting of (hourly) PV
production data and weather data. Specifically, production data are
collected from the solar PV systems of a Portuguese energy community,
while weather data are extracted via a local meteorological station2 and
the Copernicus Atmosphere Data Store.3 The PV systems are located in
4 cities in Portugal. Specifically, four PVs are located in Lisbon and the
other PVs are located in Setubal, Faro, and Braga. In Table 1, we present
an overview of the datasets used. Next, we apply some preprocessing
steps. The selected features given as input to our proposed approaches
are temperature, humidity, solar irradiance, PV production, one-hot
encoding representation of the month of the year and sine/cosine
transformation of the hour of day. The PVs have a nominal capacity
ranging from 23.52 kW to 271.53 kW.

3.3. Methodology

In this section, we describe our proposed approaches for forecasting
the PV power.

3.3.1. DANN
The original DANN introduced by Ganin et al. [18] was developed

for classification. Specifically, the authors in [18] added a label clas-
sifier after the feature extractor. In this study, we modify the DANN
framework introduced by Ganin et al. [18] for adapting it to our
regression task, i.e., forecasting the PV power. Our proposed method is
illustrated in Fig. 1, while Table 2 reports the parameters of the DANN
architecture. Specifically, our proposed DANN framework consists of
three main parts, feature extractor, regressor, and domain classifier.
Specifically, the feature extractor aims to extract features that are
domain-invariant, which is an adversarial task for the domain classifier.
The domain classifier determines whether the input belongs to the
source or target domain. The regressor is trained to correctly estimate
the PV power of the source data. These three main parts are described
in detail below:

2 https://www.wunderground.com.
3 https://ads.atmosphere.copernicus.eu.
4

Feature Extractor: The first part is the feature extractor denoted by
𝐺𝑓 (⋅; 𝜃𝑓 ).

First, we pass 𝑥 ∈ 𝑛×𝑇 through an LSTM layer [46] consisting of
512 units and ReLU activation function. 𝑛 denotes the lag and is equal
to five, while 𝑇 = 19 is the number of features. We omit the dimension
corresponding to the batch size for the sake of simplicity. Let the output
of the LSTM layer denoted by 𝑧 ∈ 𝑛×𝐷, where 𝐷 = 512. We pass 𝑧
through the encoder layer of the transformer introduced by Vaswani
et al. [47]. Specifically, we define 𝑧 as the Query (𝑄), Key (𝐾), and
Value (𝑉 ) matrices.

For capturing information from different spaces and strengthen-
ing the feature discrimination, we use the Multi-Head self-attention
mechanism (MHA). Specifically, the MHA component first converts the
original 𝑄,𝐾, 𝑉 matrices into 𝐻 sub-matrices of the same size.

𝑄𝑖 = 𝑄𝑊 𝑄
𝑖 , 𝐾

𝑖 = 𝐾𝑊 𝐾
𝑖 , 𝑉

𝑖 = 𝑉 𝑊 𝑉
𝑖 , (1)

where 𝑊 𝑄
𝑖 ∈ 𝐷×𝑑𝑞 ,𝑊 𝐾

𝑖 ∈ 𝐷×𝑑𝑘 , and 𝑊 𝑉
𝑖 ∈ 𝐷×𝑑𝑉 are learnable

parameters. As mentioned in [47,48], we set 𝑑𝑞 = 𝑑𝑘 = 𝑑𝑉 = 𝐷
𝐻 .

Therefore, we calculate self-attention operations on 𝐻 subspaces in
parallel as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ℎ𝑒𝑎𝑑1 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄1, 𝐾1, 𝑉 1),
⋮
ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖, 𝐾 𝑖, 𝑉 𝑖),
⋮
ℎ𝑒𝑎𝑑𝐻 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝐻 , 𝐾𝐻 , 𝑉 𝐻 ),

(2)

where Attention corresponds to the self-attention mechanism and is
given by the equation below:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖, 𝐾 𝑖, 𝑉 𝑖) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

(

𝑄𝑖𝐾 𝑖𝑇
√

𝑑𝑘

)

𝑉 𝑖. (3)

Finally, the results learned by the multi-head attention are con-
catenated as output and projected to dimensionality 𝑑𝑂. Formally:

𝑀𝐻𝐴(𝑄,𝐾, 𝑉 ) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2,… , ℎ𝑒𝑎𝑑𝐻 )𝑊 0, (4)

where 𝑊 0 ∈ 𝐷×𝑑0 . Specifically, 𝑑0 = 𝐷.
Next, as illustrated in Fig. 1, we add 𝑧 and 𝑀𝐻𝐴(𝑄,𝐾, 𝑉 ) and pass

the resulting matrix through a layer normalization [49]. Formally:

𝑥 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (𝑧 +𝑀𝐻𝐴 (𝑄,𝐾, 𝑉 )) . (5)

Next, we employ a fully connected feed-forward network consist-
ng of two linear transformations with a ReLU activation function in
etween. Formally:

𝐿𝑃 (𝑥) = 𝑊2
(

𝑟𝑒𝑙𝑢
(

𝑊1𝑥 + 𝑏1
))

+ 𝑏2, (6)

here 𝑊1 ∈ 𝐷×4𝐷,𝑊2 ∈ 4𝐷×𝐷.
Next, we add the outputs of Eqs. (5) and (6) and pass the resulting

atrix through a layer normalization.
Let the output of the transformer encoder be 𝑧 ∈ 𝑛×𝐷.

https://www.wunderground.com
https://ads.atmosphere.copernicus.eu
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Fig. 1. Our proposed DANN approach. DANN comprises a feature extractor, regressor, and domain classifier.
Next, we pass 𝑧 through a global average pooling layer and get
𝑝 ∈ 𝐷. Finally, 𝑝 is passed through a ReLU activated dense layer
consisting of 128 units.

Regressor - Predictor:

For obtaining the final prediction, we use a regressor denoted by
𝐺 (⋅; 𝜃 ). Specifically, the regressor consists of two dense layers with 10
5

𝑟 𝑟
units and a ReLU activation function. The last layer consists of one unit
with a linear activation function.

Domain Classifier: This is the most critical part of our architecture.
This domain classifier is denoted by 𝐺𝑑 (⋅; 𝜃𝑑 ) with parameters 𝜃𝑑 and
consists of two ReLu activated dense layers with 10 layers each. The
output layer consists of one unit with sigmoid activation function. The
purpose of the domain classifier is to discriminate features extracted
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Fig. 2. Our proposed MDD approach. MDD consists of a feature extractor, mapping function, and auxiliary function.
by 𝐺𝑓 (⋅; 𝜃𝑓 ) between source and target domains. The feature extractor
aims to confuse the discriminator by providing features without domain
characteristics. Therefore, domain adversarial training helps the model
adapt to the target domain increasing its performance.

Formally, we note the prediction loss and the domain loss respec-
tively as follows:

𝑖 (𝜃 , 𝜃 ) =  (𝐺 (𝐺 (𝑥 ; 𝜃 ); 𝜃 ), 𝑦 ), (7)
6

𝑟 𝑓 𝑟 𝑟 𝑟 𝑓 𝑖 𝑓 𝑟 𝑖
where the regression loss corresponds to the mean square loss.

𝑖𝑑 (𝜃𝑓 , 𝜃𝑑 ) = 𝑑 (𝐺𝑑 (𝐺𝑓 (𝑥𝑖; 𝜃𝑓 ); 𝜃𝑑 ), 𝑑𝑖), (8)

where the domain loss refers to the binary cross entropy loss.
During training procedure, we optimize:

𝐸(𝜃𝑓 , 𝜃𝑟, 𝜃𝑑 ) =
1

𝑇
∑

(𝑖𝑟(𝜃𝑓 , 𝜃𝑟)) − 𝜆
𝑖
𝑑 (𝜃𝑓 , 𝜃𝑑 ), (9)
𝑇 𝑖=1
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Table 2
Parameter setting of our DANN.

Layer Parameters

Feature extractor

LSTM
512 units
ReLU activation
return_sequences = True

Transformer encoder 1 layer
num_heads = 4

Global average pooling
Dense layer 128 units

Regressor
Dense 10 units
Dense 10 units
Dense 1 unit

Domain classifier
Dense 10 units
Dense 10 units
Dense 1 unit

by finding the saddle point 𝜃𝑓 , 𝜃𝑟, 𝜃𝑑 , such that:

(𝜃𝑓 , 𝜃𝑟) = argmin𝜃𝑓 ,𝜃𝑟𝐸(𝜃𝑓 , 𝜃𝑟, 𝜃𝑑 ), (10)

𝜃𝑑 = argmax𝜃𝑑𝐸(𝜃𝑓 , 𝜃𝑟, 𝜃𝑑 ). (11)

The saddle point can be found as a stationary point of the following
gradient updates:

𝜃𝑓 ⟵ 𝜃𝑓 − 𝜇

(

𝜕𝑖𝑟
𝜕𝜃𝑓

− 𝜆
𝜕𝑖𝑑
𝜕𝜃𝑓

)

, (12)

𝑟 ⟵ 𝜃𝑟 − 𝜇
𝜕𝑖𝑟
𝜕𝜃𝑟

, (13)

𝑑 ⟵ 𝜃𝑑 − 𝜇𝜆
𝜕𝑖𝑑
𝜕𝜃𝑑

, (14)

where 𝜇 is the learning rate and is equal to 10−3.
As we observe in Eq. (12), the gradients from the regression and

omain predictors are subtracted, instead of being summed. As men-
ioned in [18], such a reduction is attained by introducing the gradient
eversal layer (GRL). Specifically, during the forward propagation, the
RL acts as an identity transformation, whereas during the backward
ropagation, the GRL takes the gradient from the subsequent level,
ultiplies it by −1, and passes it to the preceding layer.

Finally, the feature extractor will generate domain-invariant fea-
ures that assist the regressor in predicting the output value of the input
ata.

.3.2. MDD
For evaluating the discrepancy between source and target domains,

e use MDD [19], which measures the difference of distributions. Our
roposed method is illustrated in Fig. 2, while Table 3 reports the
arameters of the MDD approach.

The minimization problem based on the margin loss and MDD can
e described via the equation below:

min
∈𝐹

= 𝑒𝑟𝑟(𝜌)
𝐷̂𝑠
(𝑓 ) + 𝑑(𝜌)𝑓,𝐹 (𝐷̂𝑠, 𝐷̂𝑡), (15)

here 𝐷̂𝑠 denotes the source sample, 𝐷̂𝑡 denotes the target sample,
𝑟𝑟(𝜌)
𝐷̂𝑠
(𝑓 ) indicates the source domain margin error, 𝑑(𝜌)𝑓,𝐹 (𝐷̂𝑠, 𝐷̂𝑡) denotes

he empirical MDD, 𝐹 denotes the hypothesis space, and 𝑓 denotes the
coring function.

An adversarial learning algorithm is designed for solving this prob-
em. This is accomplished by introducing an auxiliary classifier 𝑓 ′

haring the same hypothesis space with 𝑓 . The optimization problem in
the adversarial learning framework can be described via the equations
below:
{

min𝑓,𝜓 𝜀(𝐷̂𝑠) + 𝜂𝛾 (𝐷̂𝑠, 𝐷̂𝑡), (16)
7

max𝑓 ′ 𝛾 (𝐷̂𝑠, 𝐷̂𝑡).
Table 3
Parameter setting of our MDD.

Layer Parameters

Feature extractor
LSTM

512 units
ReLU activation
return_sequences = True

Transformer encoder 1 layer
num_heads = 4

Global average pooling
Dense Layer 128 units

Mapping function
Dense 10 units
Dense 10 units
Dense 1 unit

Auxiliary function
Dense 10 units
Dense 10 units
Dense 1 unit

Concretely, we define:

𝜀(𝐷̂𝑠) = E(𝑥𝑠 ,𝑦𝑠)∼𝐷̂𝑠
𝐿 (𝑓 (𝜓 (𝑥𝑠)) , 𝑦𝑠) (17)

𝛾 (𝐷̂𝑠, 𝐷̂𝑡) = E𝑥𝑡∼𝐷̂𝑡𝐿
′ (𝑓 ′ (𝜓

(

𝑥𝑡
))

, 𝑓
(

𝜓
(

𝑥𝑡
)))

,

− 𝛾E𝑥𝑠∼𝐷̂𝑠𝐿
(

𝑓 ′ (𝜓 (𝑥𝑠)) , 𝑓 (𝜓 (𝑥𝑠))
)

,
(18)

here 𝜓 denotes the feature extractor. We use the same feature ex-
ractor with DANN, as described in Section 3.3.1. 𝑓 and 𝑓 ′ denote
he mapping and auxiliary function. 𝑓 and 𝑓 ′ represent deep neural
etworks with two dense layers consisting of two units and one dense
ayer with one unit providing the output. In terms of losses denoted
y 𝐿 and 𝐿′, we use the mean squared error. The feature extractor 𝜓
s trained for minimizing the discrepancy loss term through a gradient
eversal layer as introduced in [50].

.4. Evaluation metrics

To effectively evaluate the accuracy and precision of PV power
orecasting models, appropriate error metrics must be employed. In
his study, we employ several commonly used metrics to evaluate the
erformance of the proposed models on target data. These metrics in-
lude the Root Mean Squared Error (RMSE), the Normalized Root Mean
quared Error (nRMSE), the Mean Bias Error (MBE), the Coefficient
f Determination (𝑅2), and the Forecast Skill Index (FSI). Each metric
rovides unique insights into the performance of the forecasting models
nd allows for a comprehensive evaluation of their accuracy. In this
ection, we provide detailed explanations of each metric, including
heir formulas and interpretation. By utilizing multiple metrics, we can
ain a deeper understanding of the strengths and weaknesses of the
orecasting models and identify areas for improvement.

The RMSE is one of the most widely used metrics for evaluating
he accuracy of forecasting models. It measures the differences between
he predicted and actual values, providing a single numerical value
hat quantifies the amount of error produced by the model. The RMSE
s calculated by taking the square root of the mean of the squared
ifferences between the predicted and actual values. A lower RMSE
alue indicates better performance of the forecasting model in terms
f accuracy. The equation is given as:

MSE =

√

√

√

√

1
𝑛

𝑛
∑

𝑡=1
(𝑦𝑡 − 𝑦𝑡)2, (19)

where 𝑛 is the total number of data points, 𝑦𝑡 is the actual value, and
𝑦𝑡 is the predicted value at time 𝑡. A lower RMSE indicates a better
performance of the model.

The nRMSE is a normalized version of RMSE that is often used
in PV power forecasting studies. By dividing the RMSE value by the
mean value of the actual data, nRMSE provides a more meaningful
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comparison of model performance across different scales of data. This
is particularly useful when evaluating models that predict a wide range
of values, as a model with a lower RMSE value may not necessarily be
the best model if it is predicting a smaller range of values. The equation
is given as:

𝑛𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸
𝑦

, (20)

here 𝑦 is the mean value of the actual data.
Complementary to the above-mentioned metrics, MBE is a metric

hat measures the average difference between the predicted and actual
alues in a forecasting model. In the context of PV power forecasting,
BE provides insights into any systematic biases in the model’s predic-

ions. A positive MBE value indicates that the model is overestimating
he actual values, while a negative MBE value indicates that the model
s underestimating the actual values. The equation is given as:

𝐵𝐸 = 1
𝑛

𝑛
∑

𝑡=1
(𝑦𝑡 − 𝑦𝑡). (21)

Finally, the Coefficient of Determination (𝑅2) measures the propor-
tion of variance in the actual data that is explained by the forecasting
model, providing insights into the ability of the model to accurately
capture the underlying patterns in the data. 𝑅2 ranges from 0 to 1,
where a value of 1 indicates that the model perfectly predicts the actual
data. The equation is given as:

𝑅2 = 1 −
∑𝑛
𝑡=1

(

𝑦𝑡 − 𝑦𝑡
)2

∑𝑛
𝑡=1

(

𝑦𝑡 − 𝑦
)2
. (22)

While metrics such as RMSE, nRMSE, MBE, and 𝑅2 are widely
used to evaluate the accuracy and bias of forecasting models, they
may not be sufficient to compare models that operate on different
datasets, locations, or horizons [51]. In this regard, the use of a
forecast skill score, such as the Forecast Skill Index (FSI), can provide a
more comprehensive and objective evaluation of the proposed models’
performance [52]. FSI is a metric that compares the performance of
forecasting models with a smart persistence model, and it is calculated
as follows:

𝐹𝑆𝐼 = 1 −
𝑅𝑀𝑆𝐸𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑
𝑅𝑀𝑆𝐸𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

. (23)

By using RMSE as the metric, FSI provides a normalized and
ocation-independent measure of the forecasting model’s performance,
nabling the comparison of models operating in different contexts [15].
he reference model is typically a persistence model that assumes that
he PV power output will remain constant from the previous hour.
owever, using a smart persistence model is highly encouraged [53],
llowing for the comparison of the proposed models with a better refer-
nce model. In this study we use the smart persistence model proposed
y Pedro and Coimbra [54], which estimates the expected power output
nder clear-sky conditions based on the following equation:

̂(𝑡 + 𝛥𝑡) =

{

𝑦𝑐−𝑠(𝑡 + 𝛥𝑡), if 𝑦𝑐−𝑠(𝑡) = 0,
𝑦𝑐−𝑠(𝑡 + 𝛥𝑡)

𝑦(𝑡)
𝑦𝑐−𝑠(𝑡)

, otherwise.
(24)

4. Experiments and results

4.1. Experimental setup

Before training the proposed architectures, we scale both predictor
and target variables to a [0,1] scale. After training, we apply a post-
processing step, where predicted scaled outputs are transformed to the
actual range. Regarding data of the target domain, we use one year of
data (8760 h) for training, while the rest of the data is used for testing.
We use 𝜆 of Eq. (14) equal to 0.1. We set the number of heads equal
to 4 in the multi-head self-attention. We use 𝜂 of Eq. (16) equal to 0.1.
8

We use margin (𝛾) of Eq. (18) equal to 3. We use the Adam optimizer
with a learning rate of 1e−3. We use 20% of the training set as the
validation one. We use EarlyStopping and stop training if the validation
loss has stopped decreasing for 10 consecutive epochs. We set the
number of epochs and batch size equal to 200 and 128 respectively.
We use the data from PV1 as source data. All the other PV data are
used as target data. We train and evaluate our proposed approaches
20 times and report the mean results. We use the Awesome Domain
Adaptation Python Toolbox (ADAPT) [55] and Tensorflow [56] library.
All experiments are conducted on a single Tesla P100-PCIE-16 GB GPU.

4.2. Results

This section reports the results of an empirical evaluation of the pro-
posed DL models for forecasting PV power production, as compared to a
baseline smart persistence model. Fig. 3 provides a visual comparison of
the performance of the proposed DANN and MDD models in forecasting
PV power production, as compared to the actual values. The horizontal
axis represents the hourly time-step, covering an indicative evaluation
period, while the vertical axis displays the PV power production. By
comparing the predicted values with the actual data, we can visually
assess the accuracy of the proposed models. The figure allows us to
observe the trends in the predicted values, as well as the differences
between the two models and their performance relative to the actual
data.

Table 4 shows the performance of the proposed DL models (DANN
and MDD) and the Smart Persistence model for six different PV systems.
The results demonstrate that the DL models outperform the Smart
Persistence model in most cases, achieving lower values of RMSE, MBE,
and nRMSE and higher values of 𝑅2. For instance, for the PV2 system,
both DANN and MDD models outperform the SP model, achieving a
lower RMSE of 2.84 and 2.70 kWh compared to 3.27 kWh for the SP
model. Moreover, the DANN model achieves the highest 𝑅2 of 93.44%,
while the MDD model has the highest FSI of 17.43%. Similar results can
be observed for the other PV systems, where the DL models outperform
the SP model in all evaluation metrics.

In relation to the comparison of the two proposed DL models, it
is observed that the results exhibit variability for each PV system.
Fig. 4 presents a comparative boxplot summarizing the performance
of the proposed approaches for the six target PV systems based on
the RMSE metric. More specifically, for PV2, the MDD model presents
a marginally superior RMSE than the DANN model, with difference
of 0.14 kWh. In contrast, the DANN model yields a higher 𝑅2 and
lower nRMSE values, indicating a better overall match with the data.
Regarding PV3, the DANN model performs better than the MDD model,
showing a lower RMSE and a higher 𝑅2, implying a better fit to the
data, while the MDD model presents a lower MBE, indicating a lesser
tendency towards underestimation of actual values. For PV4, the MDD
model slightly outperforms the DANN model in terms of RMSE, with
a difference of 0.08 kWh, whereas the DANN model has a lower MBE,
denoting an improved overall fit to the data, and both models exhibit
similar 𝑅2 values. Concerning PV5, the MDD model produces better
RMSE and nRMSE values than the DANN model, with differences of
0.29 kWh and 3.44%, respectively, whereas the DANN model displays
a higher 𝑅2, indicating a better fit to the data. For PV6, both models
demonstrate comparable RMSE, MBE, and 𝑅2 values, yet the MDD
model yields a marginally lower nRMSE, implying a slightly superior
fit to the data. Finally, for PV7, the MDD model presents better RMSE
and nRMSE values than the DANN model, with differences of 0.35 kWh
and 4.00%, respectively, while the DANN model exhibits a higher 𝑅2.

In conclusion, the difference in performance between DANN and
MDD is not consistent across all PV systems. For example, DANN
performs better than MDD in PV systems 2, 4, and 7, while MDD
performs better in PV systems 3, 5, and 6. This suggests that the choice
of approach may depend on the specific PV system being forecasted.
Moreover, the nRMSE values range from 31.52% (PV 7, MDD) to

62.15% (PV 3, Smart Persistence), indicating that the accuracy of the
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Fig. 3. Example illustrating how our proposed PV power forecasting models perform in comparison with the actual values. The horizontal axis indicates the hourly time-step of
the evaluation period, while the vertical axis shows the PV power production.
Table 4
Average forecasting performance (accuracy) of the smart persistence model and our
proposed approaches. 𝑅𝑀𝑆𝐸 and 𝑀𝐵𝐸 are measured in kWh, while for 𝑛𝑅𝑀𝑆𝐸, 𝑅2,
and 𝐹𝑆𝐼 the percentage is given for each model.

PV Metric DANN MDD Smart persistence

𝑃𝑉2

𝑅𝑀𝑆𝐸 (kWh) 2.84 2.70 3.27
𝑀𝐵𝐸 (kWh) −0.03 0.04 0.17
𝑛𝑅𝑀𝑆𝐸 (%) 40.02 38.02 46.18
𝑅2 (%) 93.44 94.13 91.37
𝐹𝑆𝐼 (%) 13.14 17.43

𝑃𝑉3

𝑅𝑀𝑆𝐸 (kWh) 12.82 13.78 17.32
𝑀𝐵𝐸 (kWh) 2.55 1.88 0.02
𝑛𝑅𝑀𝑆𝐸 (%) 46.41 49.89 62.15
𝑅2 (%) 91.89 90.59 85.27
𝐹𝑆𝐼 (%) 25.98 20.43

𝑃𝑉4

𝑅𝑀𝑆𝐸 (kWh) 2.07 2.15 2.69
𝑀𝐵𝐸 (kWh) 0.64 0.76 −0.82
𝑛𝑅𝑀𝑆𝐸 (%) 44.56 46.30 57.84
𝑅2 (%) 91.26 90.64 85.40
𝐹𝑆𝐼 (%) 23.04 20.07

𝑃𝑉5

𝑅𝑀𝑆𝐸 (kWh) 3.17 2.88 5.27
𝑀𝐵𝐸 (kWh) −0.37 0.09 0.35
𝑛𝑅𝑀𝑆𝐸 (%) 37.72 34.31 62.75
𝑅2 (%) 93.11 94.45 81.51
𝐹𝑆𝐼 (%) 39.84 45.35

𝑃𝑉6

𝑅𝑀𝑆𝐸 (kWh) 7.29 7.12 8.59
𝑀𝐵𝐸 (kWh) 0.54 −0.71 −0.04
𝑛𝑅𝑀𝑆𝐸 (%) 44.20 43.16 52.11
𝑅2 (%) 91.61 92.11 88.58
𝐹𝑆𝐼 (%) 15.13 17.11

𝑃𝑉7

𝑅𝑀𝑆𝐸 (kWh) 3.16 2.81 4.59
𝑀𝐵𝐸 (kWh) 0.64 0.42 0.15
𝑛𝑅𝑀𝑆𝐸 (%) 35.52 31.52 51.49
𝑅2 (%) 94.20 95.54 88.19
𝐹𝑆𝐼 (%) 31.15 38.77

forecasts varies considerably across PVs and approaches. PV 3 appears
to be the most challenging to forecast accurately, while PV 7 appears
to be the easiest. In general, the proposed DL approaches appear to
be significantly more accurate than Smart Persistence in terms of all
error metrics, suggesting that they may be more useful in real-world
applications where accurate PV generation forecasting is critical.

4.3. Ablation study

In this section, we perform a series of ablation experiments to show
the effectiveness and robustness of our introduced architectures. Results
of the ablation studies are illustrated in Figs. 5 and 6. Specifically, we
use the PV7 as the target domain.

In terms of DANN architecture, first we vary the number of heads
of the encoder part of the transformer. Results show that the larger the
number of heads is, the better performance is obtained. Specifically,
9

we observe that setting the number of heads equal to 1 results in an
RMSE of 3.59, while a number of heads equal to 2 results in an RMSE
of 3.19. Secondly, we vary the number of layers of the encoder part of
the transformer. Findings suggest that as the number of layers increases,
the RMSE presents a surge also. This can be justified by the fact that the
architecture is complex and overfits. Finally, we vary the 𝜆 parameter
and show that a value of 0.10 yields the best RMSE. On the contrary, 𝜆
values of 0.001 and 0.01 yield an RMSE of 3.70 and 3.45 respectively.

Regarding the MDD architecture, first we vary the number of heads.
Findings suggest that the larger the number of heads gets, the better
RMSE is attained. Secondly, we vary the number of layers of the Trans-
former encoder. Results show that as the number of layers increases,
the RMSE increases. To be more precise, an RMSE of 3.31 is obtained
by setting the number of layers to two, while an RMSE of 3.79 is yielded
by using four encoder layers. Finally, we vary the value of 𝛾 parameter
from 1 to 4. Findings show that RMSE values of 3.96, 3.43, and 2.97
are attained by setting 𝛾 equal to 1, 2, and 4 respectively.

5. Conclusions and future work

5.1. Conclusions

This study marks a significant leap forward in the application of
unsupervised domain adaptation methods in PV power forecasting.
We presented the first study applying unsupervised domain adaptation
methods to enhance the precision of PV power production forecasting
especially in cases with data scarcity. The significance of our con-
tribution becomes evident when we consider the novel aspects we
have introduced to this field. Our research brings forth two pioneering
unsupervised domain adaptation methods, the DANN and the MDD,
meticulously fine-tuned for regression tasks within PV power fore-
casting. These methods employ a feature extractor architecture that
integrates an LSTM layer with a transformer encoder. While DANN
incorporates a feature extractor, domain classifier, and regression pre-
dictor, MDD integrates primary and auxiliary functions within neural
networks. Our work extends these adaptation techniques into an en-
tirely uncharted territory—the realm of accurate PV power production
forecasting.

Our methodology leveraged weather and production data from a
single PV system as the source domain, seamlessly integrating it with
data from six diverse PV systems that served as our target domain.
We established a baseline using the smart persistence model and sub-
sequently introduced innovative architectures custom-tailored to this
specific task. Our findings unequivocally underscore the superiority
of our proposed approaches over the smart persistence model. To be
precise, our models consistently exhibited a substantial reduction in
RMSE across all six PV systems, with reductions ranging from 0.43
kWh to as much as 4.5 kWh. Moreover, across the various performance
metrics we evaluated, including RMSE, MBE, nRMSE, and 𝑅2, our
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Fig. 4. Boxplot that summarizes the performance of the proposed approaches for the six target PV systems based on the 𝑅𝑀𝑆𝐸: (a) PV2 (b) PV3 (c) PV4 (d) PV5 (e) PV6 (f)
PV7.
Fig. 5. Ablation study. DANN. (a) Varying the number of heads. (b) Varying the number of Transformer-Encoder Layers (c) Varying the lambda parameter.
proposed DL models consistently outperformed the Smart Persistence
model, achieving lower RMSE values by an average of 0.25 kWh, higher
𝑅2 values by an average of 8.21%, and reducing nRMSE by an average
of 15.83% across the six PV systems.
10
5.2. Future work

This work not only breaks new ground but also lays out promising
paths for future exploration in the RES forecasting domain. Firstly,
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Fig. 6. Ablation study. MDD. (a) Varying the number of heads. (b) Varying the number of Transformer-Encoder Layers (c) Varying the gamma parameter.
our intention is to diversify our domain adaptation methodologies by
integrating semi-supervised approaches, potentially harnessing addi-
tional labeled data to further elevate the precision of our forecasting.
Additionally, we are planning to extend our techniques to encompass
short-term solar irradiance forecasting, incorporating the use of sky
images. This expansion into a related, albeit distinct, domain holds
the potential to capitalize on our expertise in unsupervised domain
adaptation and offer invaluable insights into the realm of renewable
energy forecasting.

Moreover, the discernible variance in model performance across
different PV systems warrants deeper investigation into the under-
lying factors contributing to this variability. Our future work may
entail exploring system-specific adaptations to fine-tune forecast accu-
racy. Furthermore, we advocate for robustness testing of our models,
which would account for real-world uncertainties, such as sudden
weather fluctuations or equipment malfunctions. Finally, strategic col-
laborations with industry stakeholders and grid operators present the
opportunity to facilitate the practical integration of our models into
real-world scenarios, making meaningful contributions to the ongoing
efforts to optimize the integration of renewable energy sources into
existing power grids.
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